首页 > 论文 > 激光与光电子学进展 > 57卷 > 9期(pp:90102--1)

基于机载LiDAR点云数据的电力线自动提取方法

Automatic Power Line Extraction Method Based on Airborne LiDAR Point Cloud Data

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于机载LiDAR点云数据的电力线自动提取方法。先对LiDAR数据进行空间网格划分;再依据电力线在三维空间中的水平分布特性,利用改进的欧氏聚类实现电力线粗提取;采用电力线与电力塔的相连性,估算出电力塔顶端的空间坐标位置;使用改进的欧氏聚类实现单根电力线提取,利用直线和抛物线相结合的模型求解单根电力线的中心线方程及其半径;最后根据电力线方程和半径自适应生长电力线于绝缘子处,并得到单根电力线的完整点云。实验结果表明,对比于支持向量机(SVM)结合几何特征方法的分类效果,所提方法可自动、快速和精确地从电力巡线数据中提取完整的电力线,对电力巡线具有一定的应用价值。

Abstract

In this work, an automatic power line extraction method based on airborne LiDAR point cloud data is proposed. First, spatial partitioning of LiDAR data was performed. Second, according to the horizontal distribution characteristics of power lines in three-dimensional space, an improved Euclidean clustering algorithm was used to realize rough extraction of the power lines. Third, using the connection between a power line and a power tower, the spatial coordinate position at the top of the power tower was estimated. Then, the improved Euclidean clustering algorithm was used to realize single power line extraction, and the model was used to combine a straight line and parabola to obtain the centerline equation of a single power line and its radius. Finally, a power line adapter was developed at the insulator according to the power line equation and radius, and the complete point cloud of a single power line was obtained. Experiment results show that compared with the classification effect of support vector machines combined with the geometric feature method, the proposed method can extract complete power lines automatically, quickly, and accurately from power line inspection data, which has application value in power patrol.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/LOP57.090102

所属栏目:大气光学与海洋光学

基金项目:国家自然科学基金、云南省科技计划、云南师范大学研究生核心课程建设项目;

收稿日期:2019-07-21

修改稿日期:2019-09-20

网络出版日期:2020-05-01

作者单位    点击查看

杨业:云南师范大学物理与电子信息学院, 云南 昆明 650500
李宏宁:云南师范大学物理与电子信息学院, 云南 昆明 650500

联系人作者:李宏宁(lihongning_ynnu@yahoo.com.cn)

备注:国家自然科学基金、云南省科技计划、云南师范大学研究生核心课程建设项目;

【1】Liu Y, Li Z, Hayward R, et al. Classification of airborne lidar intensity data using statistical analysis and hough transform with application to power line corridors . [C]∥2009 Digital Image Computing: Techniques and Applications. December 1-3, 2009, Melbourne, VIC, Australia. New York: IEEE. 2009, 462-467.

【2】Li Z R, Liu Y E, Walker R, et al. Towards automatic power line detection for a UAV surveillance system using pulse coupled neural filter and an improved Hough transform [J]. Machine Vision and Applications. 2010, 21(5): 677-686.

【3】Sohn G, Jwa Y, Remote Sensing, Spatial Information Sciences. I- . 2012, 3: 167-172.

【4】Kim H B, Remote Sensing, Spatial Information Sciences. XXXVIII- . 2012, 5/W12: 253-258.

【5】Jwa Y, Sohn G. A piecewise catenary curve model growing for 3D power line reconstruction [J]. Photogrammetric Engineering & Remote Sensing. 2012, 78(12): 1227-1240.

【6】Zhang J X, Lin X G, Ning X G. SVM-based classification of segmented airborne LiDAR point clouds in urban areas [J]. Remote Sensing. 2013, 5(8): 3749-3775.

【7】Jwa Y, Sohn G, Kim H B. Automatic 3D powerline reconstruction using airborne lidar data [J]. IAPRS. 2009, 38(3): 105-110.

【8】Cheng L, Tong L H, Wang Y, et al. Extraction of urban power lines from vehicle-borne LiDAR data [J]. Remote Sensing. 2014, 6(4): 3302-3320.

【9】Yu J, Mu C, Feng Y M, et al. Powerlines extraction techniques from airborne LiDAR data [J]. Geomatics and Information Science of Wuhan University. 2011, 36(11): 1275-1279.
余洁, 穆超, 冯延明, 等. 机载LiDAR点云数据中电力线的提取方法研究 [J]. 武汉大学学报(信息科学版). 2011, 36(11): 1275-1279.

【10】Chen C, Mai X M, Song S, et al. Automatic power lines extraction method from airborne LiDAR point cloud [J]. Geomatics and Information Science of Wuhan University. 2015, 40(12): 1600-1605.
陈驰, 麦晓明, 宋爽, 等. 机载激光点云数据中电力线自动提取方法 [J]. 武汉大学学报(信息科学版). 2015, 40(12): 1600-1605.

【11】Cover T, Hart P. Nearest neighbor pattern classification [J]. IEEE Transactions on Information Theory. 1967, 13(1): 21-27.

【12】Adams R, Bischof L. Seeded region growing [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1994, 16(6): 641-647.

【13】Lalonde J F, Vandapel N, Huber D F, et al. Natural terrain classification using three-dimensional ladar data for ground robot mobility [J]. Journal of Field Robotics. 2006, 23(10): 839-861.

【14】Brodu N, Lague D. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology [J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2012, 68: 121-134.

引用该论文

Yang Ye,Li Hongning. Automatic Power Line Extraction Method Based on Airborne LiDAR Point Cloud Data[J]. Laser & Optoelectronics Progress, 2020, 57(9): 090102

杨业,李宏宁. 基于机载LiDAR点云数据的电力线自动提取方法[J]. 激光与光电子学进展, 2020, 57(9): 090102

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF