首页 > 论文 > 红外与激光工程 > 49卷 > 12期(pp:20201051-20201051)

啁啾脉冲光学参量振荡器及宽谱中红外激光的产生(特邀)

Chirped-pulse optical parametric oscillators and the generation of broadband midinfrared laser sources (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

宽谱中红外激光光源在红外显微光谱学、环境监测、医疗诊断以及超短脉冲产生等领域有着广阔的应用前景和急迫的需求。聚焦同步泵浦光学参量振荡器(SPOPO)的输出光谱带宽,提出了一种能够有效消除泵浦脉冲宽度对于SPOPO宽谱输出性能的限制的运转模式,即啁啾脉冲光学参量振荡器(CPOPO)。提出并介绍了基于自相位调制(SPM)效应和采用啁啾准相位匹配(CQPM)晶体这两种CPOPO的具体技术方案。基于周期极化铌酸锂(PPLN)晶体成功实现了以宽谱啁啾脉冲运转的CPOPO,最终分别获得了覆盖2.9~4.1 μm (约30 THz)、功率为92 mW和2.9~5.0 μm (约44 THz)、功率为64 mW的宽谱中红外激光输出。

Abstract

Mid-infrared laser sources with broad instantaneous-bandwidth are critical for many applications, including infrared micro-spectroscopy, environmental monitoring, medical diagnosis, and ultra-short pulse generation. In this article, the output spectrum bandwidth from synchronously pumped optical parametric oscillator (SPOPO) was focused on and a scheme, chirped-pulse optical parametric oscillator (CPOPO) was proposed to achieve broadband output beyond the limitation of pump pulse width. The CPOPO with self-phase modulation (SPM) or chirped quasi-phase matching (CQPM) were studied and achieved through period-poled lithium niobate (PPLN) based SPOPO. The outputs covered 2.9-3.9 μm (~27 THz) with power up to 92 mW and 2.9-5.0 μm (~44 THz) with 64 mw, respectively.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:TN24

DOI:10.3788/IRLA20201051

所属栏目:先进激光器技术

收稿日期:2020-10-03

修改稿日期:--

网络出版日期:2021-01-14

作者单位    点击查看

刘沛:华中科技大学 光学与电子信息学院,湖北 武汉 430074
衡家兴:华中科技大学 光学与电子信息学院,湖北 武汉 430074
张兆伟:华中科技大学 光学与电子信息学院,湖北 武汉 430074;华中科技大学 武汉光电国家研究中心,湖北 武汉 430074

联系人作者:张兆伟(zhangzhaowei@hust.edu.cn)

备注:刘沛(1992-),男,博士生,主要从事光学参量振荡器方面的研究。Email: lp19920915@163.com

【1】R W Waynant, I K Ilev and I Gannot. Mid-infrared laser applications in medicine and biology. Phil Trans R Soc Lond A. 359, 635-644(2001).

【2】D W T Griffith, D Pohler and D Schmitt. Long open-path measurements of greenhouse gases in air using near-infrared Fourier transform spectroscopy. Atmospheric Measurement Techniques. 11, 1549-1563(2018).

【3】G DowneyG Downey. Food and food ingredient authentication by mid-infrared spectroscopy and chemometrics. TrAC Trends in Analytical Chemistry. 17(7), 418-424(1998).

【4】Seddon A B. infrared photonics f early cancer diagnosis[C]16th International Conference on Transparent Optical wks (ICTON), Graz, 2014: 14

【5】钟鸣, 任刚, Ming Zhong and Gang Ren. 3~5 μm mid-infrared laser countermeasure weapon system. Sichuan Ordnance Journal. 28(1), 3-6(2007).

【6】A Schliesser, N Picqué and T W H?nsch. Mid-infrared frequency combs. Nature Photonics. 6, 440-449(2012).

【7】G L CarrG L Carr. Resolution limits for infrared microspectroscopy explored with synchrotron radiation. Rev Sci Instrum. 72, (2001).

【8】M Brehm, A Schliesser and F Keilmann. Spectroscopic near-field microscopy using frequency combs in the mid-infrared. Opt Express. 14, 11222-11233(2006).

【9】F Huth, A Govyadinov and S Amarie. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973-3978(2012).

【10】F Lu, M Jin and M A Belkin. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nature Photon. 8, 307-312(2014).

【11】Griffiths P R, de Haseth J A. Fourier tranfm infrared spectrometry[M]. New Yk: John Wiley & Sons Inc, 2007.

【12】C Petibois, G Deleris and M Piccinini. A bright future for synchrotron imaging. Nat Photonics. 3, (2009).

【13】J Ma, Z Qin and G Xie. Review of mid-infrared mode-locked laser sources in the 2.0 μm–3.5 μm spectral region. Applied Physics Reviews. 6(2), (2019).

【14】K Luke, Y Okawachi and M R E Lamont. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt Lett. 40, 4823-4826(2015).

【15】A A Savchenkov, V S Ilchenko and F D Teodoro. Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers. Opt Lett. 40, 3468-3471(2015).

【16】C R Petersen, U M?ller and I Kubat. Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre. Nat Photonics. 8, (2014).

【17】I Pupeza, D Sánchez and J Zhang. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nature Photon. 9, 721-724(2015).

【18】Zhang J., Fritsch K. and Wang Q.. Intra-pulse difference-frequency generation of mid-infrared (2.7-20 μm) by random quasi-phase-matching. Optics Letters. 44, (2019).

【19】B Chen, E Wittmann and Y Morimoto. Octave-spanning single-cycle middle-infrared generation through optical parametric amplification in LiGaS2. Opt Express. 27, 21306-21318(2019).

【20】Z Zhang, T Gardiner and D T Reid. Mid-infrared dual-comb spectroscopy with an optical parametric oscillator. Opt Lett. 38, 3148-3150(2013).

【21】L Maidment, Z Zhang and C R Howle. Stand-off identification of aerosols using mid-infrared backscattering Fourier-transform spectroscopy. Opt Lett. 41, 2266-2269(2016).

【22】L Maidment, P G Schunemann and D T Reid. White powder identification using broadband coherent light in the molecular fingerprint region. Opt Express. 26, 25364-25369(2018).

【23】EbrahimZadeh M, Dunn M H. Optical Parametric Oscillats, Hbook of Optics[M]. New Yk, USA: McGrawHill, 2000.

【24】E C Cheung and J M Liu. Theory of a synchronously pumped optical parametric oscillator in steady-state operation. J Opt Soc Am B. 7, 1385-1401(1990).

【25】S C Kumar, A Esteban-Martin and T Ideguchi. Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20 fs Ti:sapphire laser. Laser & Photonics Reviews. 8, L86-L91(2014).

【26】K Balskus, Z Zhang and R A McCracken. Mid-infrared 333 MHz frequency comb continuously tunable from 1.95 to 4.0 μm. Opt Lett. 40, 4178-4181(2015).

【27】L Maidment, P G Schunemann and D T Reid. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator. Opt Lett. 41, 4261-4264(2016).

【28】A Shirakawa and T Kobayashi. Noncollinearly phase-matched femtosecond optical parametric amplification with a 2 000 cm-1 bandwidth. Appl Phys Lett. 72, (1998).

【29】G Cerullo and S D Silvestri. Ultrafast optical parametric amplifiers. Review of Scientific Instruments. 74, (2003).

【30】M Charbonneau-Lefort, B Afeyan and M M Fejer. Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas. J Opt Soc Am B. 25, 463-480(2008).

【31】Robert W Boyd. Nonlinear Optics[M]. 2nd ed. Rochester, New Yk: Elsevier, 2008.

【32】Govind P Agrawal, Nonlinear Fiber Optics[M]. fifth ed. Rochester, New Yk: Elsevier, 2012.

【33】F ? Ilday, J R Buckley and W G Clark. Self-similar evolution of parabolic pulses in a laser. Phys Rev Lett. 92, (2004).

【34】B Proctor, E Westwig and F Wise. Characterization of a Kerr-lens mode-locked Ti: sapphire laser with positive group-velocity dispersion. Opt Lett. 18, 1654-1656(1993).

【35】A Fernandez, T Fuji and A Poppe. Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification. Opt Lett. 29, 1366-1368(2004).

【36】D Strickland and G Mourou. Compression of amplified chirped optical pulses. Opt Commun. 56, 219-221(1985).

【37】P Liu and Z Zhang. Chirped-pulse optical parametric oscillators. Optics Letters. 43(19), 4735-4738(2018).

【38】P Liu and Z Zhang. Generation of mid-infrared emission with a 3.1-4.5 μm instantaneous bandwidth from a chirped-pulse optical parametric oscillator. Optics Letters. 44(16), 3988-3991(2019).

【39】P Liu, J Heng and Z Zhang. Chirped-pulse generation from optical parametric oscillators with an aperiodic quasi-phase-matching crystal. Optics Letters. 45(9), 2568-2571(2020).

【40】W S Pelouch, P E Powers and C L Tang. Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator. Opt Lett. 17, 1070-1072(1992).

【41】Q Fu, G Mak and Driel H M van. High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti:sapphire laser. Opt Lett. 17, 1006-1008(1992).

【42】Jian P., E. Torruellas W. and Haelterman M.. Solitons of singly resonant optical parametric oscillators. Opt. Lett. 24, 400-402(1999).

【43】J P Caumes, L Videau and C Rouyer. Kerr-like nonlinearity induced via terahertz generation and the electro-optical effect in zinc crystals. Phys Rev Lett. 89, (2002).

【44】J Prawiharjo, H S S Hung and D C Hanna. Theoretical and numerical investigations of parametric transfer via difference-frequency generation for indirect mid-infrared pulse shaping. J Opt Soc Am B. 24, 895-905(2007).

【45】M A Arbore, O Marco and M M Fejer. Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings. Opt Lett. 22, 865-867(1997).

【46】M A Arbore, A Galvanauskas and D Harter. Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate. Opt Lett. 22, 1341-1343(1997).

【47】T Beddard, M Ebrahimzadeh and T D Reid. Five-optical-cycle pulse generation in the mid infrared from an optical parametric oscillator based on aperiodically poled lithium niobate. Opt Lett. 25, 1052-1054(2000).

【48】The HITRAN Database. Update to the linemixing package f CO2. [20200630].https:hitran.g.

引用该论文

Pei Liu,Jiaxing Heng,Zhaowei Zhang. Chirped-pulse optical parametric oscillators and the generation of broadband midinfrared laser sources (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201051-20201051

刘沛,衡家兴,张兆伟. 啁啾脉冲光学参量振荡器及宽谱中红外激光的产生(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201051-20201051

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF