Photonics Research, 2020, 8 (4): 04000548, Published Online: Mar. 30, 2020  

SERS study on the synergistic effects of electric field enhancement and charge transfer in an Ag2S quantum dots/plasmonic bowtie nanoantenna composite system Download: 589次

Author Affiliations
1 The Guo China-US Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
4 The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
5 e-mail: ssingh49@ur.rochester.edu
6 e-mail: zhiyu@ciomp.ac.cn
7 e-mail: guo@optics.rochester.edu
Abstract
Localized surface plasmon resonance (LSPR) of nanostructures and the interfacial charge transfer (CT) of semiconductor materials play essential roles in the study of optical and photoelectronic properties. In this paper, a composite substrate of Ag2S quantum dots (QDs) coated plasmonic Au bowtie nanoantenna (BNA) arrays with a metal–insulator–metal (MIM) configuration was built to study the synergistic effect of LSPR and interfacial CT using surface-enhanced Raman scattering (SERS) in the near-infrared (NIR) region. The Au BNA array structure with a large enhancement of the localized electric field (E-field) strongly enhanced the Raman signal of adsorbed p-aminothiophenol (PATP) probe molecules. Meanwhile, the broad enhanced spectral region was achieved owing to the coupling of LSPR. The as-prepared Au BNA array structure facilitated enhancements of the excitation as well as the emission of Raman signal simultaneously, which was established by finite-difference time-domain simulation. Moreover, Ag2S semiconductor QDs were introduced into the BNA/PATP system to further enhance Raman signals, which benefited from the interfacial CT resonance in the BNA/Ag2S-QDs/PATP system. As a result, the Raman signals of PATP in the BNA/Ag2S-QDs/PATP system were strongly enhanced under 785 nm laser excitation due to the synergistic effect of E-field enhancement and interfacial CT. Furthermore, the SERS polarization dependence effects of the BNA/Ag2S-QDs/PATP system were also investigated. The SERS spectra indicated that the polarization dependence of the substrate increased with decreasing polarization angles (θpola) of excitation from p-polarized (θpola=90°) excitation to s-polarized (θpola=0°) excitation. This study provides a strategy using the synergistic effect of interfacial CT and E-field enhancement for SERS applications and provides a guidance for the development of SERS study on semiconductor QD-based plasmonic substrates, and can be further extended to other material-nanostructure systems for various optoelectronic and sensing applications.

Bin Wang, Chen Zhao, Huanyu Lu, Tingting Zou, Subhash C. Singh, Zhi Yu, Chaonan Yao, Xin Zheng, Jun Xing, Yuting Zou, Cunzhu Tong, Weili Yu, Bo Zhao, Chunlei Guo. SERS study on the synergistic effects of electric field enhancement and charge transfer in an Ag2S quantum dots/plasmonic bowtie nanoantenna composite system[J]. Photonics Research, 2020, 8(4): 04000548.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!