首页 > 论文 > 激光与光电子学进展 > 56卷 > 20期(pp:201501--1)

姿态引导与多粒度特征融合的行人再识别

Posture-Guided and Multi-Granularity Feature Fusion for Person Reidentification

张良   车进  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

行人再识别系统中,检索到的行人图像会出现较大的姿态差异、复杂的视角变化以及检测框中行人图像不对齐等问题,为此,提出一种可以直接使用人体关键点信息进行行人图像对齐,并在此对齐基础上提取多粒度特征的重识别算法。首先使用姿态预估模型定位人体骨架关键点信息,并根据提取的骨架关键点直接进行行人图像对齐,然后对行人图像提取多粒度特征。评估阶段使用姿态信息结合多粒度特征进行相似度匹配。仅使用身份(ID)损失函数在Market1501、CUHK03、DukeMTMC-reID 3个公开数据集上进行实验。结果表明,所提算法具有一定的优势。

Abstract

In the person reidentification system, the retrieved person image will have large posture differences, complex changes in perspectives, and misalignment of person images in the detection frame. In order to solve these problems, a reidentification algorithm is proposed,which can directly use the key point information of the human body for person image alignment and extract multi-granularity features based on this alignment. First, the posture prediction model is used to locate the key points of the human skeleton, and the person image is directly aligned according to the extracted skeleton key points, and then the multi-granularity features are extracted from the person image. The evaluation phase uses posture information combined with multi-granularity features for similarity matching. The experiment is carried out only using the identity(ID) loss function on the three public datasets of Market1501, CUHK03, and DukeMTMC-reID. The results show that the proposed algorithm has certain advantages.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP392

DOI:10.3788/LOP56.201501

所属栏目:机器视觉

基金项目:国家自然科学基金;

收稿日期:2019-03-20

修改稿日期:2019-04-26

网络出版日期:2019-10-01

作者单位    点击查看

张良:宁夏大学物理与电子电气工程学院, 宁夏 银川 750021宁夏大学沙漠信息智能感知重点实验室, 宁夏 银川 750021
车进:宁夏大学物理与电子电气工程学院, 宁夏 银川 750021宁夏大学沙漠信息智能感知重点实验室, 宁夏 银川 750021

联系人作者:车进(koalache@126.com)

备注:国家自然科学基金;

【1】Liao S C, Hu Y, Zhu X Y et al. Person re-identification by local maximal occurrence representation and metric learning. [C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE. 2197-2206(2015).

【2】Gray D and Tao H. Viewpoint invariant pedestrian recognition with an ensemble of localized features. ∥Forsyth D, Torr P, Zisserman A. Computer vision-ECCV 2008. Lecture notes in computer science. Berlin, Heidelberg: Springer. 5302, 262-275(2008).

【3】Xu L, Zhao H T and Sun S Y. Monocular infrared image depth estimation based on deep convolutional neural networks. Acta Optica Sinica. 36(7), (2016).
许路, 赵海涛, 孙韶媛. 基于深层卷积神经网络的单目红外图像深度估计. 光学学报. 36(7), (2016).

【4】Zheng Z D, Zheng L and Yang Y. A discriminatively learned CNN embedding for person re-identification. ACM Transactions on Multimedia Computing, Communications, and Applications. 14(1), (2018).

【5】Zhao H Y, Tian M Q, Sun S Y et al. Spindle net: person re-identification with human body region guided feature decomposition and fusion. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI. New York: IEEE. 907-915(2017).

【6】Xu L Z and Peng L. Reidentification based on multiscale convolutional feature fusion. Laser & Optoelectronics Progress. 56(14), (2019).
徐龙壮, 彭力. 基于多尺度卷积特征融合的行人重识别. 激光与光电子学进展. 56(14), (2019).

【7】Chen B, Zha Y F, Li Y Q et al. Person re-identification based on convolutional neural network discriminative feature learning. Acta Optica Sinica. 38(7), (2018).
陈兵, 查宇飞, 李运强 等. 基于卷积神经网络判别特征学习的行人重识别. 光学学报. 38(7), (2018).

【8】Sun Y F, Zheng L, Yang Y et al. Beyond part models: person retrieval with refined part pooling (and A strong convolutional baseline). ∥Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science. Cham: Springer. 11208, 501-518(2018).

【9】Zhang X, Luo H, Fan X et al. -11-22)[2019-03-05]. https:∥arxiv. org/abs/1711, (2017).

【10】Liu H, Jie Z Q, Jayashree K et al. Video-based person re-identification with accumulative motion context. IEEE Transactions on Circuits and Systems for Video Technology. 28(10), 2788-2802(2018).

【11】Ma L Q, Sun Q R, Georgoulis S et al. Disentangled person image generation. [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE. 99-108(2018).

【12】Liu J X, Ni B B, Yan Y C et al. Pose transferrable person re-identification. [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE. 4099-4108(2018).

【13】Cao Z, Simon T, Wei S E et al. Realtime multi-person 2D pose estimation using part affinity fields. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI. New York: IEEE. 1302-1310(2017).

【14】He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE. 770-778(2016).

【15】Lin L, Wang X L, Yang W et al. Discriminatively trained and-or graph models for object shape detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 37(5), 959-972(2015).

【16】Zhong Z, Zheng L, Cao D L et al. Re-ranking person re-identification with k-reciprocal encoding. [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI. New York: IEEE. 3652-3661(2017).

【17】Zheng L, Shen L Y, Tian L et al. Scalable person re-identification: a benchmark. [C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE. 1116-1124(2015).

【18】Sun Y F, Zheng L, Deng W J et al. SVDNet for pedestrian retrieval. [C]∥2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017, Venice, Italy. New York: IEEE. 3820-3828(2017).

【19】Zheng Z D, Zheng L and Yang Y. Pedestrian alignment network for large-scale person re-identification. IEEE Transactions on Circuits and Systems for Video Technology. (2018).

【20】Xu J, Zhao R, Zhu F et al. Attention-aware compositional network for person re-identification. [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE. 2119-2128(2018).

【21】Huang H J, Li D W, Zhang Z et al. Adversarially occluded samples for person re-identification. [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE. 5098-5107(2018).

【22】Sarfraz M S, Schumann A, Eberle A et al. A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking. [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE. 420-429(2018).

【23】Suh Y, Wang J D, Tang S Y et al. Part-aligned bilinear representations for person re-identification. ∥Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018.Lecture notes in computer science. Cham: Springer. 11218, 418-437(2018).

【24】Li W, Zhu X T and Gong S G. Harmonious attention network for person re-identification. [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE. 2285-2294(2018).

【25】Chen Y B, Zhu X T and Gong S G. Person re-identification by deep learning multi-scale representations. [C]∥2017 IEEE International Conference on Computer Vision Workshops (ICCVW), October 22-29, 2017, Venice, Italy. New York: IEEE. 2590-2600(2017).

【26】Chang X B, Hospedales T M and Xiang T. Multi-level factorisation net for person re-identification. [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE. 2109-2118(2018).

【27】Wang Y, Wang L Q, You Y R et al. Resource aware person re-identification across multiple resolutions. [C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE. 8042-8051(2018).

引用该论文

Zhang Liang,Che Jin. Posture-Guided and Multi-Granularity Feature Fusion for Person Reidentification[J]. Laser & Optoelectronics Progress, 2019, 56(20): 201501

张良,车进. 姿态引导与多粒度特征融合的行人再识别[J]. 激光与光电子学进展, 2019, 56(20): 201501

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF