光电子快报(英文版), 2019, 15 (5): 347, Published Online: Jan. 7, 2020  

Achieving high-performance phosphorescent organic light-emitting diodes using thermally activated delayed fluorescence with low concentration

Author Affiliations
1 National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
2 School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei 230009, China
Abstract
We fabricated phosphorescent organic light-emitting diodes (PhOLEDs) using thermally activated delayed fluorescence (TADF) material 10,10'-(4,4'-sulfonylbis(4,1-phenylene)) bis(9,9-dimethyl-9,10-dihydroacridine) (DMAC-DPS) with low concentration, which showed better performance compared with 1,3-bis(carbazole-9-yl) benzene (mCP) based devices. When the concentration of DMAC-DPS was 1wt%, the driving voltage of the device was only 3.3 V at 1 000 cd/m2, and the efficiency and lifetime of the device were effectively improved compared with those of mCP based devices. The result indicated that DMAC-DPS could?? effectively improve the performance of phosphorescent devices. We believe that the better device performance can be attributed to the optimization of the energy transfer process in the emitter layer and lifetime of triplet excitons by DMAC-DPS. The study may provide a simple and effective strategy to achieve high-performance OLEDs.

HU Jun-tao, LU Chao-chao, WANG Peng, LI Jie, XU Kai, WANG Xiang-hua. Achieving high-performance phosphorescent organic light-emitting diodes using thermally activated delayed fluorescence with low concentration[J]. 光电子快报(英文版), 2019, 15(5): 347.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!