首页 > 论文 > 中国光学 > 13卷 > 1期(pp:121-130)

电介质球复合纳米天线对荧光定向发射的增强

Enhancement of directional luminescence emission by dielectric spheres hybrid nano-antenna

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在纳米光子学中, 提高荧光物质的定向发光强度是许多应用要解决的关键问题。为了优化电介质纳米天线的荧光增强能力, 本文提出了一种由硅纳米球二聚体与TiO2微球组成的电介质球复合纳米天线。通过时域有限差分法, 本文分别从量子产率增强、荧光收集效率增强以及荧光激发率增强3个方面研究了该复合纳米天线对荧光的增强效果。结果表明, 这种复合纳米天线不仅可以解决单个TiO2微球增强荧光时量子产率较低的问题, 还可以弥补单个硅纳米球二聚体增强荧光时荧光收集效率较差的不足。该复合纳米天线可使CdSe量子点的量子产率增强约4倍、荧光收集效率增强约2倍。此外, 由于硅纳米球二聚体与TiO2微球对荧光激发过程具有增强效果, 该复合天线最终可以产生较高的荧光定向增强倍数。在量子点发光的中心波长523 nm处, 荧光定向增强约为3 064倍。

Abstract

In nano-photonics, the enhancement of the intensity of directional luminescence in fluorescent substances is a key issue for many applications. In order to optimize the fluorescence enhancement capability of dielectric nano-antennas, a dielectric hybrid nano-antenna composed of a silicon nanosphere dimer and a TiO2 microsphere is proposed. Quantum yield enhancement, fluorescence collection efficiency enhancement and fluorescence excitation rate enhancement are all studied using the finite difference time domain method to illustrate the fluorescence enhancement effect of the dielectric sphere hybrid nano-antenna. The results show that the hybrid nano-antenna can not only solve the problem with low quantum yield using the single TiO2 microsphere, but can also compensate for low fluorescence collection efficiency using only the silicon nanosphere dimer. Due to the advantages possessed by both silicon nanosphere dimers and TiO2 microspheres in fluorescence enhancement, the quantum yield and fluorescence collection efficiency of this hybrid nano-antenna are enhanced by about 4 and 2 times, respectively. Moreover, due to the further enhancement effect on the fluorescence excitation process with the silicon nanosphere dimer and the TiO2 microsphere, a higher fluorescence directional enhancement factor can be achieved. When the emission wavelength is at a quantum dot central wavelength of 523 nm, the fluorescence directional enhancement can be up to 3 064 times than that of original fluorescence.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O432.1

DOI:10.3788/co.20201301.0121

所属栏目:原创文章

基金项目:国家自然科学基金资助项目(No.11674239, No.61575139, No.61575138); 山西省青年拔尖人才支持计划; 三晋英才支持计划

收稿日期:2019-04-04

修改稿日期:2019-05-14

网络出版日期:--

作者单位    点击查看

米 智:太原理工大学 新型传感器与智能控制教育部/山西省重点实验室, 山西 太原 030024太原理工大学 物理与光电工程学院, 山西 太原 030024
陈智辉:太原理工大学 新型传感器与智能控制教育部/山西省重点实验室, 山西 太原 030024太原理工大学 物理与光电工程学院, 山西 太原 030024
杨毅彪:太原理工大学 物理与光电工程学院, 山西 太原 030024
费宏明:太原理工大学 物理与光电工程学院, 山西 太原 030024
刘 欣:太原理工大学 物理与光电工程学院, 山西 太原 030024

联系人作者:米智(1982987116@qq.com)

备注:米 智(1991-), 男, 山西大同人, 硕士研究生, 2015年于山东师范大学获得学士学位, 现就读于太原理工大学新型传感器与智能控制教育部/山西省重点实验室光学工程专业, 主要从事微纳光子学方面的研究。

【1】邢笑雪, 王宪伟, 秦宏伍, 等. PbSe量子点近红外光源的CH4气体检测[J]. 中国光学, 2018, 11(4): 662-668.
XING X X, WANG X W, QIN H W, et al.. CH4 detection based on near-infrared luminescence of PbSe quantum dots[J]. Chinese Optics, 2018, 11(4): 662-668. (in Chinese)

【2】姜相宇, 付华, 张敏, 等. 二硫化钼量子点荧光传感器检测盐酸多西环素的研究[J]. 分析化学, 2018, 46(7): 1077-1083.
JIANG X Y, FU H, ZHANG M, et al.. Molybdenum disulfide quantum dots-based fluorescence sensor for detection of doxycycline Hyclate[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7): 1077-1083. (in Chinese)

【3】PARFENOV A, GRYCZYNSKI I, MALICKA J, et al.. Enhanced fluorescence from fluorophores on fractal silver surfaces[J]. The Journal of Physical Chemistry B, 2003, 107(34): 8829-8833.

【4】邹小波, 史永强, 郑悦, 等. 基于荧光共振能量转移的金纳米粒子/碳量子点荧光纳米探针检测精氨酸[J]. 分析化学, 2018, 46(6): 960-968.
ZOU X B, SHI Y Q, ZHENG Y, et al.. Detection of arginine by AuNPs/CQDs nanoprobes based on fluorescence resonance energy transfer effect[J]. Chinese Journal of Analytical Chemistry, 2018, 46(6): 960-968. (in Chinese)

【5】任升, 刘丽炜, 李金华, 等. 纳米尺度下的局域场增强研究进展[J]. 中国光学, 2018, 11(1): 31-46.
REN SH, LIU L W, LI J H, et al.. Advances in the local field enhancement at nanoscale[J]. Chinese Optics, 2018, 11(1): 31-46. (in Chinese)

【6】ASLAN K, PREVITE M J R, ZHANG Y X, et al.. Metal-enhanced fluorescence from nanoparticulate zinc films[J]. The Journal of Physical Chemistry C, 2008, 112(47): 18368-18375.

【7】KOSAKO T, KADOYA Y, HOFMANN H F. Directional control of light by a nano-optical Yagi-Uda antenna[J]. Nature Photonics, 2010, 4: 312-315.

【8】ANDERSEN S K H, BOGDANOV S, MAKAROVA O, et al.. Hybrid plasmonic bullseye antennas for efficient photon collection[J]. ACS Photonics, 2018, 5(3): 692-698.

【9】RUTCKAIA V, HEYROTH F, NOVIKOV A, et al.. Quantum dot emission driven by Mie resonances in silicon nanostructures[J]. Nano Letters, 2017, 17(11): 6886-6892.

【10】ALBELLA P, POYLI M A, SCHMIDT M K, et al.. Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers[J]. The Journal of Physical Chemistry C, 2013, 117(26): 13573-13584.

【11】CAMBIASSO J, KNIG M, CORTS E, et al.. Surface-enhanced spectroscopies of a molecular monolayer in an all-dielectric nanoantenna[J]. ACS Photonics, 2018, 5(4): 1546-1557.

【12】BOUCHET D, MIVELLE M, PROUST J, et al.. Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas[J]. Physical Review Applied, 2016, 6(6): 064016.

【13】CALDAROLA M, ALBELLA P, CORTS E, et al.. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion[J]. Nature Communications, 2015, 6(1): 7915.

【14】REGMI R, BERTHELOT J, WINKLER P M, et al.. All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules[J]. Nano Letters, 2016, 16(8): 5143-5151.

【15】GRARD D, DEVILEZ A, AOUANI H, et al.. Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere[J]. Journal of the Optical Society of America B, 2009, 26(7): 1473-1478.

【16】YAN Y ZH, ZENG Y, WU Y, et al.. Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays[J]. Optics Express, 2014, 22(19): 23552-23564.

【17】SUN S, WU L, BAI P, et al.. Fluorescence enhancement in visible light: dielectric or noble metal?[J]. Physical Chemistry Chemical Physics, 2016, 18(28): 19324-19335.

【18】姜杰, 李士浩, 严一楠, 等氮掺杂高量子产率荧光碳点的制备及其体外生物成像研究[J]发光学报, 2017, 38(12): 1567-1574.
JIANG J,LI SH H,YAN Y N,et al.. Preparation of N-doped fluorescent carbon dots with high quanturn yeild for In-vitro bioimaging[J]. Chinese Journal of Luminescense, 2017,38(12): 1567-1574.

【19】PAPASIMAKIS N, FEDOTOV V A, SAVINOV V, et al.. Electromagnetic toroidal excitations in matter and free space[J]. Nature Materials, 2016, 15(3): 263-271.

【20】LU G W, ZHANG T Y, LI W Q, et al.. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod[J]. The Journal of Physical Chemistry C, 2011, 115(32): 15822-15828.

【21】蔡小舒, 苏明旭, 沈建琪, 等. 颗粒粒度测量技术及应用[M]. 北京: 化学工业出版社, 2010.
CAI X SH, SHU M X, SHEN J Q, et al.. Particle Size Measurement Technology and Application[M]. Beijing: Chemical Industry Press, 2010. (in Chinese)

【22】张文君, 翟保才, 许键. ZnO作为电子传输层的绿光胶体CdSe量子点LED(QD-LED)的制备与表征[J]. 发光学报, 2012, 33(11): 1171-1176.
ZHANG W J, ZHAI B C, XU J. Fabrication and characterization of green CdSe quantumn dot light emitting diodes with ZnO electron-transport layer[J]. Chinese Journal of Luminescence, 2012, 33(11): 1171-1176. (in Chinese)

【23】CAMBIASSO J, GRINBLAT G, LI Y, et al.. Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas[J]. Nano Letters, 2017, 17(2): 1219-1225.

【24】DEVILEZ A, STOUT B, BONOD N. Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission[J]. ACS Nano, 2010, 4(6): 3390-3396.

【25】JIAO X J, BLAIR S. Optical antenna design for fluorescence enhancement in the ultraviolet[J]. Optics Express, 2012, 20(28): 29909-29922.

【26】DAS G M, RINGNE A B, DANTHAM V R, et al.. Numerical investigations on photonic nanojet mediated surface enhanced raman scattering and fluorescence techniques[J]. Optics Express, 2017, 25(17): 19822-19831.

【27】PALIK E D. Handbook of Optical Constants of Solids[M]. San Diego: Academic Press, 1998.

【28】BAKKER R M, PERMYAKOV D, YU Y F, et al.. Magnetic and electric hotspots with silicon nanodimers[J]. Nano Letters, 2015, 15(3): 2137-2142.

【29】CHEN ZH G, TAFLOVE A, BACKMAN V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique[J]. Optics Express, 2004, 12(7): 1214-1220.

引用该论文

MI Zhi,CHEN Zhi-hui,YANG Yi-biao,FEI Hong-ming,LIU Xin. Enhancement of directional luminescence emission by dielectric spheres hybrid nano-antenna[J]. Chinese Optics, 2020, 13(1): 121-130

米 智,陈智辉,杨毅彪,费宏明,刘 欣. 电介质球复合纳米天线对荧光定向发射的增强[J]. 中国光学, 2020, 13(1): 121-130

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF