液晶与显示, 2020, 35 (1): 12, 网络出版: 2020-03-10   

一种采用介电突起消除边缘场效应的LCoS

Eliminating fringe field effect using dielectric protrusions in LCoS
作者单位
1 四川大学 电子信息学院, 四川 成都 610065
2 北京航空航天大学 仪器科学与光电工程学院, 北京 100191
摘要
提出了一种使用介电突起消除边缘场效应的硅基液晶显示器 (Liquid Crystal on Silicon, LCoS)。在像素电极之间设计介电突起结构来阻隔相邻像素电极之间的串扰电场, 通过对LCoS的液晶分子指向矢分布和边缘场串扰现象进行仿真, 分析了边缘场效应产生的机理及其影响因素, 并对相应反射率和相位进行了计算和对比。具有介电突起的LCoS相比传统LCoS在减少相邻像素边缘反射率和相位干扰上有明显的效果, 反射率始终维持在96%, 相位差保持不变, 对比度大于35∶1的区域接近60°, 整体视角基本不受影响。所提出的介电突起能够很好地消除横向电场对相邻像素内液晶分子取向的影响, 进而提高了LCoS的对比度, 大大改善了显示效果。
Abstract
An LCoS (Liquid Crystal on Silicon) using dielectric protrusions to eliminate fringe field effect is proposed. The dielectric protrusion structure is designed between the pixel electrodes to block the crosstalk electric field between the adjacent pixel electrodes. The liquid crystal molecular director distribution and fringe field crosstalk of the LCoS are simulated, the mechanism of fringe field effect and its influencing factors are analyzed, and the corresponding reflectivity and phase are calculated and compared. The LCoS with dielectric protrusions has a significant effect on eliminating the edge reflectance and phase interference of adjacent pixels compared to the traditional LCoS. The reflectance is always maintained at 96%, the phase difference remains unchanged, areas with contrast greater than 35∶1 are over to 60° and the overall viewing angle is largely unaffected. The proposed dielectric protrusion can eliminate the influence of the transverse electric field on the orientation of liquid crystal molecules in adjacent pixels, which improves the contrast of LCoS and greatly improves the display effect.

侯文义, 储繁, 田莉兰, 李睿, 顾小情, 周祥屿, 王琼华. 一种采用介电突起消除边缘场效应的LCoS[J]. 液晶与显示, 2020, 35(1): 12. HOU Wen-yi, CHU Fan, TIAN Li-lan, LI Rui, GU Xiao-qing, ZHOU Xiang-yu, WANG Qiong-hua. Eliminating fringe field effect using dielectric protrusions in LCoS[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(1): 12.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!