首页 > 论文 > 红外与激光工程 > 49卷 > 2期(pp:205005--1)

超连续激光单色仪系统级光谱响应度定标比对验证

System-level spectral responsivity calibration comparison and validation of supercontinuum laser and monochromator

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

细分光谱扫描定标技术是实现遥感器高精度光谱辐射定标的重要方式, 基于超连续激光单色仪的定标装置是实现遥感器细分扫描定标的新选择。为验证所建立的超连续激光单色仪装置的系统级定标能力, 利用硅辐亮度计和滤光片辐射计, 分别采用超连续激光单色仪定标装置和可调谐激光定标装置对其进行了系统级绝对光谱响应度定标比对验证。实验结果表明: 在所验证波段范围内, 两种定标装置获得的硅辐亮度计绝对光谱响应度系统级定标结果最大偏差为0.6%。通道式滤光片辐射计的带内绝对光谱响应度定标结果最大偏差优于0.4%, 带内积分响应度最大偏差约0.1%。文中的研究验证了超连续激光单色仪定标装置具有良好的系统级定标能力, 能够获得较高的定标精度, 在遥感器的绝对光谱响应度定标中具有重要应用前景。

Abstract

The spectrally-resolved scanning calibration is an important technique to satisfy the high accuracy spectral radiometric calibration of remote sensors. The calibration facility based on supercontinuum laser and monochromator(SCM) is a new choice to realize spectrally-resolved scanning calibration of remote sensors. To verify the system-level calibration capability of the SCM, the spectral radiance responsivity of the silicon radiometer and filter radiometer were measured by using the calibration facility based on the supercontinuum laser monochromator and the tunable laser, respectively. The experimental results showed that the maximum deviation of the calibration results for silicon radiometer between supercontinuum laser monochromator and tunable laser was 0.6% within the validated band. And the maximum deviation of in-band absolute spectral responsivity calibration results of channel filter radiometer was better than 0.4%, and the maximum deviation of in-band integral responsivity was about 0.1%. The research in this paper verifies that the supercontinuum laser monochromator calibration facility has good system-level calibration capability, can obtain high calibration accuracy. It has important application prospects in the calibration of absolute spectral responsivity of remote sensors.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O432.1

DOI:10.3788/irla202049.0205005

所属栏目:激光器与激光光学

基金项目:国家重点研发计划重点专项(2018YFB0504602); 国家自然科学基金(61505222)

收稿日期:2019-10-05

修改稿日期:2019-11-25

网络出版日期:--

作者单位    点击查看

谢臣瑜:中国科学院安徽光学精密机械研究所 通用光学定标与表征技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
翟文超:中国科学院安徽光学精密机械研究所 通用光学定标与表征技术重点实验室, 安徽 合肥 230031
李健军:中国科学院安徽光学精密机械研究所 通用光学定标与表征技术重点实验室, 安徽 合肥 230031
高 放:中国科学院安徽光学精密机械研究所 通用光学定标与表征技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
李 越:中国科学院安徽光学精密机械研究所 通用光学定标与表征技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
吴浩宇:中国科学院安徽光学精密机械研究所 通用光学定标与表征技术重点实验室, 安徽 合肥 230031
郑小兵:中国科学院安徽光学精密机械研究所 通用光学定标与表征技术重点实验室, 安徽 合肥 230031

联系人作者:谢臣瑜(xcy1993@mail.ustc.edu.cn)

备注:谢臣瑜(1993-), 男, 博士生, 主要从事辐射定标方面的研究。

【1】Fan Bin, Chen Xu, Li Bicen, et al. Technical innovation of optical remote sensing payloads onboard GF-5 satellite[J]. Infrared and Laser Engineering, 2017, 46(1): 0102002. (in Chinese)

【2】Zheng Xiaobing. High-accuracy radiometric calibration of satellite optical remote sensors[J]. Spacecraft Recovery & Remote Sensing, 2011, 32(5): 36-43. (in Chinese)

【3】Brown S W, Eppeldauer G P, Lykke K R, et al. Facility for spectral irradiance and radiance responsivity calibrations using uniform sources[J]. Applied Optics, 2006, 45(32): 8218.

【4】Schuster M, Nevas S, Sperling A, et al. Spectral calibration of radiometric detectors using tunable laser sources[J]. Applied Optics, 2012, 51(12): 1950.

【5】Zhao Lei, Li Chao, Li Yue, et al. Hundred-watt-level supercontinuum spectrum generation based on photonic crystal fiber[J]. Chinese Journal of Lasers, 2017, 44(2): 0201018. (in Chinese)

【6】Levick A P, Greenwell C L, Ireland J, et al. Spectral radiance source based on supercontinuum laser and wavelength tunable bandpass filter: the spectrally tunable absolute irradiance and radiance source[J]. Applied Optics, 2014, 53(16): 3508.

【7】Yamaguchi Y, Yamada Y, Isshii J, et al. Supercontinuum source-based system for pre-launch calibration of the hyperspectral sensor[C]// SPIE, 2012, 8533: 85331K-1.

【8】Yoo Y, Kim G, Park S, et al. Spectral responsivity calibration of the reference radiation thermometer at KRISS by using a super-continuum laser-based high-accuracy monochromatic source[J]. Metrologia, 2016, 53: 1354.

【9】Wang Xiaoxun, Li Zhigang. Design and performance test of gershun tube spectral radiometer[J]. Acta Optica Sinica, 2017, 37(6): 0612002. (in Chinese)

【10】Xu Qiuyun, Li Yanan, Zhai Wenchao, et al. Quantitative analysis of laser speckle removal[J]. Opto-Electronic Engineering, 2010, 37(5): 32-36. (in Chinese)

【11】Zhang Yanna, Zheng Xiaobing, Li Jianjun, et al. Research on system level calibration method of multi-band filter radiometer[J]. Acta Optica Sinica, 2013, 33(8): 0812004. (in Chinese)

【12】JJF 1059.1-2012 Evaluation and Expression of Uncertainty in Measurement[S]. 2012.

【13】Louis-Philippe Boivin. Study of bandwidth effects in monochromator-based spectral responsivity measurements[J]. Applied Optics, 2002, 41(10): 1929-1935.

【14】Yamaguchi Y, Yamada Y, Ishii J, et al. Supercontinuum-source-based facility for absolute calibration of radiation thermometers[J]. International Journal of Thermophysics, 2015, 36: 1825.

引用该论文

Xie Chenyu,Zhai Wenchao,Li Jianjun,Gao Fang,Li Yue,Wu Haoyu,Zheng Xiaobing. System-level spectral responsivity calibration comparison and validation of supercontinuum laser and monochromator[J]. Infrared and Laser Engineering, 2020, 49(2): 0205005

谢臣瑜,翟文超,李健军,高 放,李 越,吴浩宇,郑小兵. 超连续激光单色仪系统级光谱响应度定标比对验证[J]. 红外与激光工程, 2020, 49(2): 0205005

被引情况

【1】金文玲,曹乃亮,朱明东,陈伟,张佩光,赵庆磊,梁静秋,余应弘,吕金光,阚瑞峰. 基于近红外超连续激光光谱的水稻种子活力无损分级检测研究. 中国光学, 2020, 13(5): 1032-1043

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF