首页 > 论文 > 液晶与显示 > 35卷 > 2期(pp:173-179)

基于改进k-means算法的数字图像聚类

Digital image clustering based on improved k-means algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对海量彩色图像聚类问题, 本文引入改进型k-means算法并将其应用于彩色图像聚类中。该算法由类内-类间距离加权k-means算法和基于近邻传播聚类算法的类数量上界确定方法组成。在实验中, 彩色图像的亮度分量的局部二值模式 (Local Binary Pattern, LBP)图被重组成行向量, 然后构成样本集, 本文所提出的改进型k-means算法被用于对样本集进行聚类处理。实验结果显示, 在多个聚类方法常用的评价指标上, 本方法相比于传统方法达到了更高的聚类准确度。同时, 相比于传统方法, 本方法也更具有执行效率。

Abstract

For the mass image clustering problem, the improved k-means algorithm is proposed and applied to the color image clustering. The algorithm consists of intraclass-interclass distance weighted k-means algorithm and nearest neighbor propagation clustering algorithm. In the experiment, the LBP map of the luminance component of the color image is reconstructed into a row vector and then constitutes a sample set. The improved k-means algorithm proposed in this paper is used to cluster the sample set. The experimental results show that the proposed method achieves higher clustering accuracy than the traditional methods in the evaluation indicators commonly used in multiple clustering methods. At the same time, the method is more efficient than traditional methods.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP394.1;TH691.9

DOI:10.3788/yjyxs20203502.0173

所属栏目:图像处理

收稿日期:2019-07-22

修改稿日期:2019-10-21

网络出版日期:--

作者单位    点击查看

高 西:重庆医科大学 附属大学城医院, 重庆 401331
胡子牧:重庆医科大学 附属大学城医院, 重庆 401331

联系人作者:高西(gaoxi0627@hotmail.com)

备注:高 西(1976-), 女, 四川内江人, 学士, 2009年于重庆医科大学获得学士学位, 主要从事皮肤性病学暨医学美容、皮肤影像及图像处理方面的研究。

【1】LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

【2】DIXIT R, NASKAR R. Region duplication detection in digital images based on centroid linkage clustering of key-points and graph similarity matching [J]. Multimedia Tools and Applications, 2019, 78(10): 13819-13840.

【3】孟晓燕, 段建民, 刘丹. 采用人体树图与混合粒子群聚类的行人检测 [J]. 光学 精密工程, 2018, 26(7): 1802-1812.
MENG X Y, DUAN J M, LIU D. Pedestrian detection based on tree-structured graphical model of the human body and hybrid particle swarm clustering [J]. Optics and Precision Engineering, 2018, 26(7): 1802-1812. (in Chinese)

【4】郑思凡, 王卫星, 吴永春. 基于光流拓扑稀疏加权的同步运动去混叠 [J]. 光学 精密工程, 2019, 27(5): 1188-1195. ZHENG S F, WANG W X, WU Y C. Synchronous motion de-aliasing based on optical flow topological sparse weighting [J]. Optics and Precision Engineering, 2019, 27(5): 1188-1195. (in Chinese)

【5】陈华伟, 袁小翠, 吴禄慎, 等. 基于曲率突变分析的点云特征线自动提取 [J]. 光学 精密工程, 2019, 27(5): 1218-1228.
CHEN H W, YUAN X C, WU L S, et al. Automatic point cloud feature-line extraction algorithm based on curvature-mutation analysis [J]. Optics and Precision Engineering, 2019, 27(5): 1218-1228. (in Chinese)

【6】LU S Z, YU H L, WANG X H, et al. Clustering method of raw meal composition based on PCA and kmeans [C]//Proceedings of the 37th Chinese Control Conference. Wuhan, China: IEEE, 2018: 121-135.

【7】YIH J M. FCM algorithm besed on normalized mahalanobis distances in image clustering [C]//Proceedings of 2010 International Conference on Machine Learning and Cybernetics. Qingdao, China: IEEE, 2010: 2724-2729.

【8】ZHANG Z Y, CHENG H M, ZHANG S G. Approach to SOM based correlation clustering [C]//Proceedings of 2008 Chinese Control and Decision Conference. Yantai, China: IEEE, 2008: 121-135.

【9】FREY B J, DUECK D. Clustering by passing messages between data points [J]. Science, 2007, 315(5814): 972-976.

【10】ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise [C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon: ACM, 1996: 226-231.

【11】SANDER J, ESTER M, KRIEGEL H P, et al. Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications [J]. Data Mining and Knowledge Discovery, 1998, 2(2): 169-194.

【12】ANKERST M, BREUNIG M M, KRIEGEL H P, et al. OPTICS: ordering points to identify the clustering structure [C]//Proceedings of 1999 ACM SIGMOD International Conference on Management of Data. Philadelphia, Pennsylvania, USA: ACM, 1999: 49-60.

【13】XU X W, JGER J, KRIEGEL H P. A fast parallel clustering algorithm for large spatial databases [J]. Data Mining and Knowledge Discovery, 1999, 3(3): 263-290.

【14】黄晓辉, 王成, 熊李艳, 等.一种集成簇内和簇间距离的加权k-means聚类方法 [J].计算机学报, 2019: 1-15.
HUANG X H, WANG C, XIONG L Y, et al. A weighting k-means clustering approach by integrating intra-cluster and inter-cluster distances [J]. Chinese Journal of Computers, 2019: 1-15. (in Chinese)

【15】周世兵, 徐振源, 唐旭清.新的K-均值算法最佳聚类数确定方法 [J].计算机工程与应用, 2010, 46(16): 27-31.
ZHOU S B, XU Z Y, TANG X Q. New method for determining optimal number of clusters in K-means clustering algorithm [J]. Computer Engineering and Applications, 2010, 46(16): 27-31. (in Chinese)

【16】DUDOIT S, FRIDLYAND J. A prediction-based resampling method for estimating the number of clusters in a dataset [J]. Genome Biology, 2002, 3(7): research0036.1.

【17】QIAN P J, ZHOU J X, JIANG Y Z, et al. Multi-view maximum entropy clustering by jointly leveraging inter-view collaborations and intra-view-weighted attributes [J]. IEEE Access, 2018, 6: 28594-28610.

【18】陶性留, 俞璐, 王晓莹.基于非负矩阵分解和模糊C均值的图像聚类方法 [J].信息技术与网络安全, 2019, 38(3): 44-48.
TAO X L, YU L, WANG X Y. One method based on non-negative matrix factorization and fuzzy C means for image clustering [J]. Information Technology and Network Security, 2019, 38(3): 44-48. (in Chinese)

【19】JIA H J, DING S F, MENG L H, et al. A density-adaptive affinity propagation clustering algorithm based on spectral dimension reduction [J]. Neural Computing and Applications, 2014, 25(7/8): 1557-1567.

【20】PAL N R, BEZDEK J C, HATHAWAY R J. Sequential competitive learning and the fuzzy c-means clustering algorithms [J]. Neural Networks, 1996, 9(5): 787-796.

【21】JAIN A K. Data clustering: 50 years beyond K-means [J]. Pattern Recognition Letters, 2010, 31(8): 651-666.

引用该论文

GAO Xi,HU Zi-mu. Digital image clustering based on improved k-means algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(2): 173-179

高 西,胡子牧. 基于改进k-means算法的数字图像聚类[J]. 液晶与显示, 2020, 35(2): 173-179

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF