应用激光, 2020, 40 (1): 158, 网络出版: 2020-05-27   

基于激光超声透射波波包能量的缺陷定量检测研究

Quantitative Detection of Defects Based on Wave Packet Energy of Laser Ultrasonic Transmission Wave
贾广福 1,2郑宾 1,2郭华玲 1,2,*刘辉 1,2
作者单位
1 中北大学电气与控制工程学院, 山西 太原 030051
2 中北大学电子测试技术重点实验室, 山西 太原 030051
摘要
为了实现对金属构件表面微小裂纹的定量检测, 本文采用仿真和实验相结合的方法, 对经过不同深度表面裂纹的激光超声透射Rayleigh(瑞利)波的波形进行对比分析, 提取畸变区域内的波形, 计算其波包能量, 研究波包能量与表面裂纹深度的依赖关系, 并通过拟合表达式对裂纹深度进行反演。研究结果表明: 当表面裂纹的深度以0.1 mm的步长从0.1 mm增加到0.5 mm时, 透射Rayleigh波的波包能量呈线性减少, 且仿真与实验分析结果相一致。反演所得裂纹深度与理论裂纹深度的最大误差为0.022 4 mm, 总体平均误差为0.011 5 mm。因此, 该研究结果可以有效的对表面裂纹深度进行定量表征。
Abstract
In order to realize the quantitative detection of micro cracks on the surface of metal components, this paper adopts the method of combining simulation and experiment to carry out comparative analysis on the waveforms of laser ultrasonic transmission Rayleigh waves passing through surface cracks with different depths, extracts the waveforms in the distortion region, calculates the wave packet energy, studies the dependence of the wave packet energy on the depth of surface cracks, and inverts the crack depth through fitting expressions. The results show that when the depth of the surface crack increases from 0.1 mm to 0.5 mm in steps of 0.1 mm, the wave packet energy of the transmitted Rayleigh wave decreases linearly, and the simulation results are consistent with the experimental analysis results. The maximum error between the retrieved crack depth and the theoretical crack depth is 0.022 4 mm, and the overall average error is 0.011 5 mm. Therefore, the research results can effectively quantify the depth of surface cracks.

贾广福, 郑宾, 郭华玲, 刘辉. 基于激光超声透射波波包能量的缺陷定量检测研究[J]. 应用激光, 2020, 40(1): 158. Jia Guangfu, Zheng Bin, Guo Hualing, Liu Hui. Quantitative Detection of Defects Based on Wave Packet Energy of Laser Ultrasonic Transmission Wave[J]. APPLIED LASER, 2020, 40(1): 158.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!