首页 > 论文 > 量子光学学报 > 26卷 > 1期(pp:21-26)

强耦合腔-QED系统中原子的纳秒脉冲激发光谱研究

Study of the Excitation Spectroscopy of Atoms in a Strongly Coupled Cavity QED System by ns Laser Pulses

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

本文在多原子强耦合腔-QED系统中,利用脉冲宽度为5 ns的强脉冲光在垂直于腔轴方向直接激发原子,脉冲的峰值功率为40 mW,通过光学腔观测激发原子辐射到腔中的光子获得相应的激发光谱。我们发现当光场频率和原子跃迁失谐±80 MHz时原子激发率达到最大,而在共振时原子激发被抑制。我们建立了脉冲光与三能级原子相互作用的模型,通过缀饰态能够解释此现象。

Abstract

We studied the excitation spectroscopy of atoms in a strongly coupled cavity QED system. The atoms were directly excited by 5 ns laser pulses shining with pulse’s peak power of 40 mW from the side of cavity with a linear polarization perpendicular to the quantization axis. Due to the strongly coupling between the cavity and atom, the excitation of the atom decayed to the cavity mode first and then excaped the system from the cavity. Thus, the output of the cavity reflected the excitation of atoms inside of cavity. We found that when the frequency of the pulses are detunings at ±80 MHz with the atomic transition the exciation of the atoms is maximazied, however the excitation is suppressed when the frequency of the pulses are resonant with atomic transition. The results can be explained by the dressed-state model with a 3-level atom interacting with the laser pulse.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O432.1

DOI:10.3788/jqo20202601.0401

所属栏目:光与物质相互作用

基金项目:国家自然科学基金(批准号: 11634008; 11674203; 11574187; 11974223; 11974225); 山西省“1331工程”重点学科建设计划。

收稿日期:2020-02-03

修改稿日期:2020-02-12

网络出版日期:--

作者单位    点击查看

葛瑞芳:量子光学与光量子器件国家重点实验室,山西大学光电研究所,省部共建极端光学协同创新中心,山西大学, 太原 030006
杨鹏飞:量子光学与光量子器件国家重点实验室,山西大学光电研究所,省部共建极端光学协同创新中心,山西大学, 太原 030006
韩星:量子光学与光量子器件国家重点实验室,山西大学光电研究所,省部共建极端光学协同创新中心,山西大学, 太原 030006
张鹏飞:量子光学与光量子器件国家重点实验室,山西大学光电研究所,省部共建极端光学协同创新中心,山西大学, 太原 030006
李刚:量子光学与光量子器件国家重点实验室,山西大学光电研究所,省部共建极端光学协同创新中心,山西大学, 太原 030006
张天才:量子光学与光量子器件国家重点实验室,山西大学光电研究所,省部共建极端光学协同创新中心,山西大学, 太原 030006

联系人作者:李刚(gangli@sxu.edu.cn)

备注:葛瑞芳(1992-), 女, 山西大同人, 硕士研究生, 主要从事腔量子电动力学的研究。

【1】Chen W, Beck K A, Bucker R,et al. All-optical switch and transistor gated by one stored photon [J]. Science, 2013, 341: 768-770. DOI:10.1126/science.1238169.

【2】Thompson R J, Rempe G, Kimble H J.Observation of normal-mode splitting for an atom in an optical cavity[J].Phys Rev Lett,1992, 68: 1132-1135. DOI:10.1103/physrevlett.68.1132.

【3】Brune M,et al.Quantum Rabi Oscillation: A Direct Test of Field Quantization in a Cavity[J].Phys Rev Lett, 1996,76: 1800-1803. DOI:10.1109/QELS.1996.865696.

【4】Boca A, et al. Observation of the Vacuum Rabi Spectrum for one Trapped Atom[J]. Phys Rev Lett, 2004,93: 233603.1-233603.4. DOI:10.1103/PhysRevLett.93.233603.

【5】Yang P F, Xia X W, He H, et al. Realization of Nonlinear Optical Nonreciprocity on a Few-Photon Level Based on Atoms Strongly Coupled to an Asymmetric Cavity[J]. Phys Rev Lett, 2019,123: 233604. DOI:10.1103/PhysRevLett.123.233604.

【6】Zhang X H, Qi H, Li L, et al. Resonance fluorescence spectrum of two-level atom in cavity[J]. J At Mol Phys, 2018,35(3): 473-476. DOI:10.3969/j.issn.1000-0364.2018.03.018.

【7】Fabrice p. Laussy, et al. Strong Coupling of Quantum Dots in Microcavities[J].Phys Rev Lett, 2008, 101(8): 083601. DOI:10.1103/PhysRevLett.101.083601.

【8】Johansson J, et al. Vacuum Rabi Oscillations in a macroscopic superconducting qubit LC oscillator system[J].Phys Rev Lett, 2006,96:127006.1-127006.4. DOI:10.1103/PhysRevLett.96.127006.

【9】Jonathan R, Tischler, et al. Strong Coupling in a Microcavity LED[J]. Phys Rev Lett, 2005,95(3): 036401. DOI:10.1103/PhysRevLett.95.036401.

【10】Maunz P, Puppe T, Schuster I. Normal-Mode Spectroscope of a Single-Bound-Atom-cavity System[J]. Phys Rev Lett, 2005,94: 033002.1-033002.4. DOI:10.1103/PhysRevLett.94.033002.

【11】Bimbaum K M, Boca A, Miller R. Photon blockade in an optical cavity with one trapped atom[J]. Nature 2005,436: 87-90. DOI:10.1038/nature03804.

【12】Hamsen C, Tolazzi K N, Wilk T. Two-photon Blockade in an Atom-Driven Cavity QED system[J]. Phys Rev Lett, 2017, 118: 133604. DOI:10.1103/PhysRevLett.118.133604.

【13】Markus H, Bernhard W, et al. A single-Photon Serve with Just One Atom[J]. Nat Phys, 2007,3: 253-255. DOI:10.1038/nphys569.

【14】Yang G Q, Tan Z, Zou B C, et al. Interference control of nonlinear excitation in a multiatom cavity quantum electrodynamics system[J]. Opt Lett,2014,39(23): 6695-6698. DOI:10.1364/OL.39.006695.

【15】Hiroki T,Ezra K,Costas C,et al.Strong Coupling of a Single Ion to an Optical Cavity[J]. Phys Rev Lett, 2020,124: 013602. DOI:10.1103/PhysRevLett.124.013602.

引用该论文

GE Rui-Fang,YANG Peng-Fei,HAN Xing,ZHANG Peng-fei,LI Gang,ZHANG Tian-Cai. Study of the Excitation Spectroscopy of Atoms in a Strongly Coupled Cavity QED System by ns Laser Pulses[J]. Acta Sinica Quantum Optica, 2020, 26(1): 21-26

葛瑞芳,杨鹏飞,韩星,张鹏飞,李刚,张天才. 强耦合腔-QED系统中原子的纳秒脉冲激发光谱研究[J]. 量子光学学报, 2020, 26(1): 21-26

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF