光谱学与光谱分析, 2020, 40 (5): 1351, 网络出版: 2020-12-09   

共振光声光谱系统中椭球形光声池的理论分析

Geometrical Optimization of Resonant Ellipsoidal Photoacoustic Cell in Photoacoustic Spectroscopy System
作者单位
东北大学信息科学与工程学院, 辽宁 沈阳 110819
摘要
实时在线气体检测在石油化工、 现代工业、 环境、 医学诊断、 智能电网中变压器在线监测等领域具有非常重要的意义。 光声光谱气体检测技术是一种基于光声效应的气体检测技术, 由于其具有检测灵敏度高、 选择性强、 分辨率高、 检测范围宽、 可实时在线监测等优点, 已被广泛用于痕量气体检测。 在光声光谱系统中, 光声池是最重要的组成部分, 其性能的好坏对于系统检测灵敏度和分辨率有着直接的影响。 近些年来, 光声光谱气体检测系统主要采用标准圆柱形共振光声池, 系统的检测灵敏度和分辨率主要由微音器决定。 为了进一步提高光声光谱法对于痕量气体检测的灵敏度和分辨率, 对光声池进行深入研究分析, 提出一种高灵敏度的椭球形共振光声池。 结合气体热动力学和声学理论, 利用COMSOL软件中的热声学模块分别对椭球形光声池和传统的圆柱形光声池进行了有限元方法分析, 建立了其声学特征模型, 并且对光声池的共振频率, 光声池谐振腔内的声压分布情况以及声压级大小等声学特性进行了仿真研究。 模拟了椭球形光声池的共振频率和声压信号大小与光声池谐振腔长度和中心半径之间的关系, 从而优化了光声池的尺寸结构, 选取了长度为100 mm, 中心半径为5 mm的椭球形光声池最优结构, 与相同外部尺寸下的传统圆柱形光声池进行了对比分析。 结果表明, 椭球形光声池的共振频率为1 340 Hz, 处于共振状态时产生的声压信号达到了5.01×10-5 Pa, 声压级为11 dB, 品质因数为70; 圆柱形光声池共振频率为1 650 Hz, 共振状态下产生的声压信号大小为5.7×10-6 Pa, 声压级为-13.9 dB, 品质因数为66。 对比可知, 椭球形光声池的共振频率明显小于圆柱形光声池, 且最大声压信号是同尺寸圆柱形共振光声池的8.78倍, 声压级提高了24.9 dB。 由此可知, 设计的椭球形共振光声池体积小, 声压信号大, 检测灵敏度高, 光声池的性能有了明显提升, 对于光声光谱法用于微痕量气体检测的灵敏度提高有着重要意义。
Abstract
Real-time gas detection is of great significance in manyfields, such as petrochemical industry, modern industry, environment, medical diagnosis, transformers. Photoacoustic spectroscopy (PAS) gas detection technology is a gas detection technology based on the PA effect. It has been widely used in tracegas detection because of its high detection sensitivity, high selectivity, high resolution, wide detection range and real-time monitoring. The PA cell is the most important componentof the PAS system.And the sensitivity and resolution of the system are directly affected by PA cell. The standard cylindrical structure of the resonance the PA cell is a common choice, and the detection sensitivity and resolution of the system are mainly improved by the microphone. In this paper, a high-sensitivity ellipsoidal resonant photoacoustic cell is proposed for the first time. Combining with the theory of gas thermodynamics and acoustics, the finite element method of ellipsoidal photoacoustic cell and traditional cylindrical photoacoustic cell is analyzed by COMSOL software, its acoustic feature model is established. The acoustic characteristics of the photoacoustic cell,such as resonance frequency, the sound pressure distribution in the cavity of the photoacoustic cell, and the acoustic pressure level are simulated. The relationship between resonance frequency, sound pressure, the size of ellipsoidal, cylindrical photoacoustic cell and the length and center radius of the ellipsoidal photoacoustic cell is simulated. The optimal length and center radius ofthe ellipsoidal photoacoustic cell is 100 and 5 mm, respectively. Compared with a conventional cylindrical photoacoustic cell, the resonant frequency of the ellipsoidal photoacoustic cell is 1 340 Hz and the cylindrical photoacoustic cell is 1 650 Hz. The sound pressure signal generated in the resonance state is about 5.01×10-5 Pa and the cylindrical photoacoustic cell is 5.7×10-6 Pa. The sound pressure level is 11 dB and the cylindrical photoacoustic cell is -13.9 dB. The Q-factor is 70 and the cylindrical photoacoustic cell is 66. The results show that the resonant frequency of the ellipsoidal photoacoustic cell is less than that of the cylindrical photoacoustic cell, and the maximum sound pressure signal is about 9 times that of the same size cylindrical resonant photoacoustic cell, and the sound pressure level is increased from -13.9 to 11 dB. The ellipsoidal resonant photoacoustic cell has small volume, large acoustic pressure signal, high detection sensitivity, and the performance of the photoacoustic cell has been improved significantly. This structurecan improve the sensitivity of photoacoustic spectroscopy for the detection of trace gases.

王巧云, 尹翔宇, 杨磊, 邢凌宇. 共振光声光谱系统中椭球形光声池的理论分析[J]. 光谱学与光谱分析, 2020, 40(5): 1351. WANG Qiao-yun, YIN Xiang-yu, YANG Lei, XING Ling-yu. Geometrical Optimization of Resonant Ellipsoidal Photoacoustic Cell in Photoacoustic Spectroscopy System[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1351.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!