人工晶体学报, 2020, 49 (3): 532, 网络出版: 2020-06-15  

高分散镁铝层状双氢氧化物的煅烧改性及其对甲基橙的吸附性能研究

Calcination Modification of Highly Dispersed Magnesium-Aluminum Layered Double Hydroxides and Its Adsorption Properties for Methyl Orange
作者单位
1 桂林理工大学材料科学与工程学院, 广西光电材料与器件重点实验室, 桂林 541004
2 桂林理工大学,广西 有色金属隐伏矿床勘查及材料开发协同创新中心, 桂林 541004
3 桂林理工大学环境科学与工程学院, 桂林 541004
摘要
以Mg(NO3)2?6H2O为镁源, Al(NO3)3?9H2O为铝源, 采用水热法制备了高分散的镁铝层状双氢氧化物MgAl-LDH, 并高温煅烧生成MgAl-LDO。利用场发射 扫描电子显微镜(FE-SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、X射线光电子分析(XPS)、氮气吸附-脱附法对产物进行表征 分析, 并且探讨了其吸附机理。结果表明, 2种产物的吸附过程对比于Langmuir吸附模型基本一致, 其中MgAl-LDO的比表面积更大, 吸附性能更好, 对甲基橙 的最大吸附量可达925.9 mg?g-1。吸附机制包括化学作用、氢键、静电作用和表面络合作用。
Abstract
Using Mg(NO3)2?6H2O as the magnesium source and Al(NO3)3?9H2O as the aluminum source, a highly dispersed magnesium-aluminum layered double hydroxide MgAl-LDH was prepared by hydrothermal method and calcined to generate MgAl-LDO. The product was characterized and analyzed by Field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron analysis (XPS), nitrogen adsorption-desorption method, and its adsorption mechanism was discussed. The results show that the adsorption process of the two products is basically the same as the Langmuir adsorption model. Among them, the specific surface area of MgAl-LDO is larger and the adsorption performance is better. The maximum adsorption capacity of methyl orange can reach 925.9 mg?g-1. Adsorption mechanisms include chemical interaction, hydrogen bonding, electrostatic interaction, and surface complexation.

奚羽, 郑国源, 吴彩红, 王吉林, 王燕舞, 龙飞, 邹正光. 高分散镁铝层状双氢氧化物的煅烧改性及其对甲基橙的吸附性能研究[J]. 人工晶体学报, 2020, 49(3): 532. XI Yu, ZHENG Guoyuan, WU Caihong, WANG Jilin, WANG Yanwu, LONG Fei, ZOU Zhengguang. Calcination Modification of Highly Dispersed Magnesium-Aluminum Layered Double Hydroxides and Its Adsorption Properties for Methyl Orange[J]. Journal of Synthetic Crystals, 2020, 49(3): 532.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!