首页 > 论文 > 光学技术 > 46卷 > 2期(pp:134-139)

TDLAS波长调制压力测量法参数优化

Parameter optimization of TDLAS wavelength modulation pressure measurement method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

使用TDLAS技术进行动态压力测量已经成为压力测量领域的研究热点。波长调制法实验装置较为复杂,需要对多个参数进行设置,选择出最优的预设参数能够取得更好的实验效果,获得更高的测量精度。目前波长调制法的实验参数设置基本凭借个人经验,使用Matlab程序仿真结合波长调制法的TDLAS测量技术,能够对实验中需要进行预设的重要参数进行了分析。通过计算4990cm-1波段和6330cm-1波段附近的多条吸收峰,发现4990.09cm-1波段处的吸收峰更适合作为波长调制法的测量波段。以4990.09cm-1处的吸收峰为研究对象,进行了波长调制法压力测量仿真建模,计算了调制度、调谐频率和调制频率对二次谐波幅值和对称性的影响并深入地分析了影响因素,总结了其变化规律。在综合考虑抗噪性能和测量精度的情况下,选择了调制度为2.5,调谐频率30Hz,调制频率5kHz为最佳实验参数。基于Matlab的仿真模型能够快速计算大量参数点,更加直观地分析出对参数的影响趋势,为实验仪器和预设参数的选择提供依据。

Abstract

Dynamic pressure measurement using TDLAS technology has become a research hotspot in the field of pressure measurement. The experimental device of wavelength modulation method is complex. It needs to set many parameters. Choosing the optimal preset parameters can achieve better experimental results and higher measurement accuracy. At present, the choice of experimental parameters of wavelength modulation method is based on personal experience. Using the Matlab program to simulate the TDLAS measurement technology combined with the wavelength modulation method, it is possible to analyze the important parameters that need to be preset in the experiment. The absorption peaks near 4990cm-1 and 6330cm-1 bands are calculated. It is found that the absorption peaks at 4990.09cm-1 bands are more suitable for the measurement band of wavelength modulation method. Taking the absorption peak at 4990.09cm-1 as the research object, the simulation model of pressure measurement by wavelength modulation method was established. The effects of modulation degree, frequency and frequency on the amplitude and symmetry of second harmonic were calculated, and the influencing factors were analyzed in depth, and the changing rules were summarized. Considering the accuracy and anti-noise performance, the optimal experimental parameters are modulation degree of 2.5, tuning frequency of 30Hz and modulation frequency of 5kHz. The simulation model based on MATLAB can quickly calculate a large number of parameter points, more intuitively analyze the trend of influence on parameters, and provide a basis for the selection of experimental instruments and preset parameters.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP391.9

所属栏目:光学测量

基金项目:国家自然科学基金项目(5177052767)

收稿日期:2019-10-16

修改稿日期:2019-12-10

网络出版日期:--

作者单位    点击查看

宫学程:航空工业北京长城计量测试研究所, 北京 100095
高一凡:航空工业北京长城计量测试研究所, 北京 100095
杨军:航空工业北京长城计量测试研究所, 北京 100095
谢兴娟:航空工业北京长城计量测试研究所, 北京 100095
张鹤宇:航空工业北京长城计量测试研究所, 北京 100095

联系人作者:宫学程(dawncome@foxmai.com)

备注:宫学程(1994—),男 ,硕士研究生, 从事光学压力测量研究。

【1】王玉芳. 航空发动机压力计量测试的发展趋势[J].计测技术,2012,32(s1):23—25.
Wang Yufang. The development of aircraft engine pressure metrology&measurement[J]. Metrology & Measurement Technology,2012,32(s1):23—25.

【2】习振华, 李得天, 成永军, 等. 光学方法在真空计量中应用研究进展[J]. 真空与低温,2016,22(06):311—318.
Xi Zhenhua, Li Detian, Cheng Yongjun, et al. Recent advances of vacuum metrology techniques and applications with optical methods[J]. Vacuum & Cryogenics,2016,22(06):311—318.

【3】王书涛, 王昌冰, 潘钊, 等. 光学技术在气体浓度检测中的应用[J]. 光电工程,2017,44(09):862—871.
Wang Shutao, Wang Changbing, Pan Zhao, et al. Applications of optical technology in gas concentration detection[J]. Opto-Electronic Engineering,2017,44(09):862—871.

【4】聂伟, 阚瑞峰, 杨晨光, 等. 可调谐二极管激光吸收光谱技术的应用研究进展[J]. 中国激光,2018,45(09):9—29.
Nie Wei, Kan Ruifeng, Yang Chenguang, et al. Research progress on the application of tunable diode laser absorption spectroscopy[J]. Chinese Journal of Lasers,2018,45(09):9—29.

【5】张可可, 刘世萱, 陈世哲, 等. 基于TDLAS的二氧化碳浓度检测系统及压强补偿研究[J]. 仪表技术与传感器,2016,(01):53—55.
Zhang Keke, Liu Shixuan, Chen Shizhe, et al. TDLAS carbon dioxide concentration detection system and its pressure compensation[J]. Instrument Technique and Senor,2016(01):53—55.

【6】Douglass K O, Olson D A. Towards a standard for the dynamic measurement of pressure based on laser absorption spectroscopy[J]. Metrologia,2016,53(3):S96—S106.

【7】Jousten K, Padilla-Víquez G, Bock T. Investigation of tunable diode laser absorption spectroscopy for its application as primary standard for partial pressure measurements[J]. Journal of Physics:Conference Series,2008,100(9):92005.

【8】卢伟业, 朱晓睿, 李越胜, 等. TDLAS直接吸收法和波长调制法在线测量CO2的比较[J]. 红外与激光工程,2018,47(07):155—160.
Lu Weiye,Zhu Xiaorui,Li Yuesheng,et al. Comparison of direct absorption and wavelength modulation methods for online measurement of CO2 by TDLAS[J]. Infrared and Laser Engineering,2018,47(07):155—160.

【9】Sun K, Chao X, Sur R, et al. Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing[J]. Applied Physics B,2013,110(4):497—508.

【10】王雪梅, 刘石. 基于波长调制光谱技术的二氧化碳浓度测量[J]. 大气与环境光学学报,2017,12(05):356—361.
Wang Xuemei, Liu Shi. Mearurement of CO2 concentration based on wavelength modulation spectroscopy technology[J]. Journal of Atmospheric and Environmental Optics,2017,12(05):356—361.

【11】何启欣. 基于红外激光吸收光谱技术的气体检测系统研究[D]. 吉林大学,2018.
He Qixin. Research on gas detection system based on infrared laser absorption spectroscopy technique[D]. Jilin University,2018.

【12】熊涌泉, 周宾, 王一红, 等. 基于波长调制光谱技术的免标定单线测量法[J]. 光学学报,2017,37(09):344—353.
Xiong Yongquan, Zhou Bin, Wang Yihong, et al. Calibration-free one-line method based on wavelength modulation spectroscopy[J]. Acta Optica Sinica,2017,37(09):344—353.

【13】孙奇, 王广宇, 屈东胜, 等. 基于TDLAS的高温光谱参数测量方法研究[J]. 机电产品开发与创新,2017,30(03):12—15.
Sun Qi, Wang Guangyu, Qu Dongsheng, et al. Measurement of spectral parameter at high temperature based on TDLAS[J]. Development & Innovation of Machinery & Electrical Products,2017,30(03):12—15.

【14】刘兴立. 基于TDLAS的数字信号处理与分析[D]. 四川:电子科技大学,2015.
Liu Xingli. The digital signal processing and analysis based on TDLAS[D]. Sichuan: University of Electronic Sicence and Technology of China,2015.

【15】刘昱峰, 王彪, 杨凯, 等. TDLAS检测技术气体吸收过程的仿真研究[J]. 激光杂志,2017,38(03):37—40.
Liu Yufeng, Wang Biao, Yang Kai, et al. The simulation research of gas absorption process based on TDLAS[J]. Laser Journal,2017,38(03):37—40.

【16】王琦. 基于Simulink的锁定放大器仿真技术的实现[J]. 电子质量,2012(08):13—14.
Wang Qi. Simulation of lock- in amplifier based on Simulink[J]. Electronics Quality,2012(08):13—14.

【17】朱卫华, 陈权, 刘国稳. 数字锁相放大器优化设计与仿真研究[J]. 仪表技术,2017(02):18—21.
Zhu Weihua, Chen Quan, Liu Guowen. The optimization design and simulation study of digital lock-in amplifier[J]. Instrumentation Technology,2017(02):18—21.

【18】陈泽宁, 王自鑫, 贺子芸, 等. 数字锁相放大器中相敏检测技术的基本原理实验[J]. 物理实验,2018,38(01):22—28.
Chen Zening, Wang Zixin, He Ziyun, et al. Basic experiment of phase sensitive detection in digital lock-in amplifier[J]. Physics Experimentation,2018,38(01):22—28.

【19】房思超. TDLAS型CO2气体检测技术的仿真研究及系统研制[D]. 长春:中国科学院长春光学精密机械与物理研究所,2017.
Fang Sichao. The simulation research and development of carbon dioxide detection system based on TDLAS[D]. Changchun: Changchun Institute of Optics,Fine mechanics and Physics Chinese Academy of Sciences,2017.

引用该论文

GONG Xuecheng,GAO Yifan,YANG Jun,XIE Xingjuan,ZHANG Heyu. Parameter optimization of TDLAS wavelength modulation pressure measurement method[J]. Optical Technique, 2020, 46(2): 134-139

宫学程,高一凡,杨军,谢兴娟,张鹤宇. TDLAS波长调制压力测量法参数优化[J]. 光学技术, 2020, 46(2): 134-139

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF