首页 > 论文 > Journal of Innovative Optical Health Sciences > 13卷 > 4期(pp:2050017--1)

Tunable absorption characteristics in multilayered structures with graphene for biosensing

Tunable absorption characteristics in multilayered structures with graphene for biosensing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Graphene derivatives, possessing strong Raman scattering and near-infrared absorption intrinsically, have boosted many exciting biosensing applications. The tunability of the absorption characteristics, however, remains largely unexplored to date. Here, we proposed a multilayer configuration constructed by a graphene monolayer sandwiched between a buffer layer and onedimensional photonic crystal (1DPC) to achieve tunable graphene absorption under total internal reflection (TIR). It is interesting that the unique optical properties of the buffer-graphene-1DPC multilayer structure, the electromagnetically induced transparency (EIT)-like and Fanolike absorptions, can be achieved with pre-determined resonance wavelengths, and furtherly be tuned by adjusting either the structure parameters or the incident angle of light. Theoretical analyses demonstrate that such EIT- and Fano-like absorptions are due to the interference of light in the multilayer structure and the complete transmission produced by the evanescent wave resonance in the configuration. The enhanced absorptions and the huge electrical field enhancement effect exhibit potentials for broad applications, such as photoacoustic imaging and Raman imaging.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1142/s1793545820500170

基金项目:National Natural Science Foundation of China (NSFC) (81671726, 81930048, 81627805, 61675104); Hong Kong Research Grant Council (25204416); Hong Kong Innovation and Technology Commission (ITS/022/18); Guangdong Science and Technology Commission (2019A1515011374); Shenzhen Science and Technology Innovation Commission (JCYJ20170818104421564).

收稿日期:2020-03-17

修改稿日期:2020-04-14

网络出版日期:--

作者单位    点击查看

Li Jin:Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, P. R. China
Jun Zhou:Department of Microelectronic Engineering, School of Physical Science & Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
Puxiang Lai:Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, P. R. China

联系人作者:Puxiang Lai(puxiang.lai@polyu.edu.hk)

【1】T. J. Fan, Y. S. Zhou, M. Qiu, H. Zhang, "Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine," J. Innov. Opt. Heal. Sci. 11, 1830003 (2018).

【2】J. M. Yoo, J. H. Kang, B. H. Hong, "Graphenebased nanomaterials for versatile imaging studies," Chem. Soc. Rev. 44, 4835 (2015).

【3】M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, T. Mueller, "Microcavityintegrated graphene photodetector," Nano Lett. 12, 2773 (2012).

【4】S. K. Krishnan, E. Singh, P. Singh, M. Meyyappan, H. S. Nalwa, "A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors," RSC Adv. 9, 8778 (2019).

【5】M. B. Lien, C. H. Liu, I. Y. Chun, S. Ravishankar, H. Nien, M. M. Zhou, J. A. Fessler, Z. H. Zhong, T. B. Norris, "Ranging and light field imaging with transparent photodetectors," Nat. Photonics 14, 143 (2020).

【6】T. Roger, S. Restuccia, A. Lyons, D. Giovannini, J. Romero, J. Jeffers, M. Padgett, D. Faccio, "Coherent absorption of N00N states," Phys. Rev. Lett. 117, 023601 (2016).

【7】F. Yang, W. Song, C. L. Zhang, H. Fang, C. J. Min, X. C. Yuan "Graphene-based ultrasonic detector for photoacoustic imaging", Proc. SPIE 10710, 1071032 (2018).

【8】X. Z. Huang, W. T. Shang, H. Deng, Y. Y. Zhou, F. Cao, C. H. Fang, P. X. Lai, J. Tian, "Clothing spiny nanoprobes against the mononuclear phagocyte system clearance in vivo: Photoacoustic diagnosis and photothermal treatment of early stage liver cancer with erythrocyte membrane-camouflaged gold nanostars," Appl. Mater. Today 18, 100484 (2020).

【9】Y. Y. Zhou, J. B. Chen, C. Liu, C. B. Liu, P. X. Lai, L. D. Wang, "Single-shot linear dichroism opticalresolution photoacoustic microscopy," Photoacoustics, 16, 100148 (2019).

【10】J. T. Liu, N. H. Liu, J. Li, X. J. Li, J. H. Huang, "Enhanced absorption of graphene with onedimensional photonic crystal," Appl. Phys. Lett. 101, 052104 (2012).

【11】A. Ferreira, N. M. R.Peres,R. M.Ribeiro,T. Stauber, "Graphene-based photodetector with two cavities," Phys. Rev. B 85, 115438 (2012).

【12】T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, J. Zi, "Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies," Phys. Rev. B 86, 165416 (2012).

【13】A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, L. Martin-Moreno, "Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons," Phys. Rev. B 85, 081405(R) (2012).

【14】Y. F. Xiao, L. N. He, J. G. Zhu, L. Yang, "Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid," Appl. Phys. Lett. 94, 231115 (2009).

【15】J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, W. L. Zhang, "Active control of electromagnetically induced transparency analogue in terahertz metamaterials," Nat. Commun. 3, 1151 (2012).

【16】L. Chen, C. M. Gao, J. M. Xu, X. F. Zang, B. Cai, Y. M. Zhu, "Observation of electromagnetically induced transparency-like transmission in terahertz asymmetric waveguide-cavities systems," Opt. Lett. 38, 1379 (2013).

【17】A. Naweed, D. Goldberg, V. M. Menon, "All-optical electromagnetically induced transparency using onedimensional coupled microcavities," Opt. Express 22, 18818 (2014).

【18】W. Z. Ren, Y. M. Dai, H. B. Cai, H. Y. Ding, N. Pan, X. P. Wang, "Tailoring the coupling between localized and propagating surface plasmons: Realizing Fano-like interference and high-performance sensor," Opt. Express 21, 10251 (2013).

【19】M. A. Vincenti, D. de Ceglia, M. Grande, A. D'Orazio, M. Scalora, "Nonlinear control of absorption in onedimensional photonic crystal with graphene-based defect," Opt. Lett. 38, 3550 (2013).

【20】J. Zhou, L. Jin, E. Y. B. Pun, "Tunable multichannel nonreciprocal perfect absorber based on resonant absorption," Opt. Lett. 37, 2613 (2012).

【21】Z. Y. Li, Y. N. Xia, "Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering," Nano Lett. 10, 243 (2010).

【22】N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett. 100, 207402 (2008).

【23】G. Pirruccio, L. M. Moreno, G. Lozano, J. G. Rivas, "Coherent and broadband enhanced optical absorption in graphene," ACS Nano 7, 4810 (2013).

【24】M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th Edition, Cambridge: Cambridge University Press (1999).

【25】Y. T. Fang, Z. C. Liang, "Unusual transmission through usual one-dimensional photonic crystal in the presence of evanescent wave," Opt. Commun. 283, 2102 (2010).

【26】E. Kretschmann, "Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results," Opt. Commun. 6(2), 185–187 (1972).

【27】A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. A: Hadrons Nucl. 216, 398–410 (1968).

【28】X. Zhao, T. Y. Huang, P. S. Ping, X. Wu, P. Huang, J. X. Pan, Y. H. Wu, Z. Cheng, "Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure," Sensors 18, 2056 (2018).

【29】J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Edition, Princeton University Press (2008).

【30】M. Sik Kim, B. V. Lahijani, N. Descharmes, J. Straubel, F. Negredo, C. Rockstuhl, M. Hayrinen, M. Kuittinen, M. Roussey, H. P. Herzig, "Subwavelength focusing of Bloch surface waves," ACS Photonics 4, 1477–1483 (2017).

【31】R. X. Wang, J. X. Chen, Y. F. Xiang, Y. Kuai, P. Wang, H. Ming, J. R. Lakowicz, D. G. Zhang, "Two-dimensional photonic devices based on Bloch surface waves with one-dimensional grooves," Phys. Rev. Appl. 10(2), 024032 (2018).

【32】Y. S. Fan, C. C. Guo, Z. H. Zhu, W. Xu, F. Wu, X. D. Yuan, S. Q. Qin, "Monolayer-graphene-based perfect absorption structures in the near infrared," Opt. Express 25(12), 13079–13086 (2017).

【33】K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667 (1997).

【34】C. H. Xue, H. T. Jiang, H. Chen, "Highly e±cient all-optical diode action based on light-tunneling heterostructures," Opt. Express 18, 7479 (2010).

【35】B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998 (1997).

【36】H. X. Liu, K. M. Liu, Y. X. Niu, "Investigation on the extended range of absorbing film for a microcavity enhanced graphene photodetector," EPL 119(2), 24003 (2017).

【37】W. Withayachumnankul, B. M. Fischer, D. Abbott, "Quarter-wavelength multilayer interference filter for terahertz wave," Opt. Commun. 281, 2374–2379 (2008).

【38】Q. Zhou, J. L. Zheng, S. Onishi, M. F. Crommie, A. K. Zettl, "Graphene electrostatic microphone and ultrasonic radio," PNAS 112(29), 8942–8946 (2015).

【39】H. Heo, S. Lee, S. Kim, "Broadband absorption enhancement of monolayer graphene by prism coupling in the visible range," Carbon 154, 42–47 (2019).

【40】A. Srivastava, C. Galande, L. J. Ci, L. Song, C. Rai, D. Jariwala, K. F. Kelly, P. M. Ajayan, "Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films," Chem. Mater. 22(11), 3457–3461 (2010).

【41】W. Q. Yuan, M. Li, Z. Q. Wen, Y. L. Sun, D. S. Ruan, Z. H. Zhang, G. Chen, Y. Gao, "The fabrication of large-area, uniform graphene nanomeshes for high-speed, room-temperature direct terahertz detection," Nanoscale Res. Lett. 13, 190 (2018).

【42】V. S. Ilchenko, A. M. Bennett, P. Santini, A. A. Savchenkov, A. B. Matsko, L. Maleki, "Whispering gallery mode diamond resonator," Opt. Lett. 38(21), 4320–4323 (2013).

【43】J. F. Shackelford, Introduction to Materials Science for Engineers, 5th Edition, McGraw-Hill, New York (2000).

【44】J.-Q. Xi, M. Ojha, W. Cho, J. L. Plawsky, W. N. Gill, Th. Gessmann, E. F. Schubert, "Omnidirectional reflector using nanoporous SiO2 as a low-refractiveindex material," Opt. Lett. 30(12), 1518–1520 (2005).

【45】M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, C. M. Bowden, "Thin-film nonlinear optical diode," Appl. Phys. Lett. 66, 2324 (1995).

【46】T. T. Zhong, Z. P. Yu, H. H. Li, Z. H. Li, H. H. Li, P. X. Lai, "Active wavefront shaping for controlling and improving multimode fiber sensor," J. Innov. Opt. Heal. Sci. 12, 1942007 (2019).

【47】S. F. Cheng, H. H. Li, Y. Q. Luo, Y. J. Zheng, P. X. Lai, "Artificial intelligence-assisted light control and computational imaging through scattering media," J. Innov. Opt. Heal. Sci. 12, 1930006 (2019).

【48】H. W. Qiu, S. S. Gao, P. X. Chen, Z. Li, X. Y. Liu, C. Zhang, Y. Y. Xu, S. Z. Jiang, C. Yang, Y. Y. Huo, W. W. Yue, "Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film," Opt. Commun. 366, 275 (2016).

引用该论文

Li Jin,Jun Zhou,Puxiang Lai. Tunable absorption characteristics in multilayered structures with graphene for biosensing[J]. Journal of Innovative Optical Health Sciences, 2020, 13(4): 2050017

Li Jin,Jun Zhou,Puxiang Lai. Tunable absorption characteristics in multilayered structures with graphene for biosensing[J]. Journal of Innovative Optical Health Sciences, 2020, 13(4): 2050017

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF