首页 > 论文 > 量子电子学报 > 37卷 > 3期(pp:266-272)

用于光谱测量仪器的高精度温压控制系统设计

Design of high-precision temperature and pressure control system for spectral measuring instrument

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

温度、压强作为影响光谱测量精度的主要因素,是研发高精度光谱测量仪器的研究重点。 针对该问题开发了一套用于光谱测量仪器的高精度温度压强控制系统。该系统从仪器结构、电路设计和控制算法等方面进行了 设计和优化,最终系统长时间温度控制精度可达0.003 °C, 压强控制精度达到5.34 Pa。在控压未控温条件下,该系统对 体积分数为300×10-6 的甲烷气体浓度测量结果波动为12.06×10-6, 标准差σ为 3.26×10-6; 而在温压控制下,浓度测量结果波动为4.03×10-6, 标准差σ为0.57×10-6。 结果表明该高精度温度压强控制系统可以提高光谱测量仪器的测量精度和稳定度,同时也验证了该系统的可靠性和可行性。 所提出的用于光谱测量仪器的温度压强控制系统达到了实验和生产标准,为研发同类高精度光谱测量仪器提供了借鉴和参考。

Abstract

As the main factors affecting the accuracy of spectral measurement, temperature and pressure are the research focus of developing high-precision spectral measuring instrument. A high-precision temperature and pressure control system for spectral measuring instrument is developed. The system is designed and optimized from the aspects of instrument structure, circuit design and control algorithm, so the long-term temperature control accuracy of the system can reach 0.003 °C, and long-term pressure control accuracy can reach 5.34 Pa. Under the condition of pressure control but without temperature control, the measurement results of methane gas concentration with a volume fraction of 300×10-6 fluctuates by 12.06×10-6 and the deviation σ is 3.26×10-6. While under the condition of both temperature and pressure control, the fluctuation of the corresponding measurement results is 4.03×10-6 and the deviation σ is 0.57×10-6. Results show that the high-precision temperature and pressure control system can improve the measurement accuracy and stability of the spectral measuring instrument, and also verify the reliability and feasibility of the system. It is shown that the developed temperature and pressure control system for spectral measuring instrument has reached the experimental and production standards, which provides reference for the development of similar high-precision spectral measuring instrument.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O433.1

DOI:10.3969/j.issn.1007-5461. 20.002

所属栏目:光谱

基金项目:Supported by State Key Project of Research and Development Plan (国家重点研发计划, 2017YFC0209701, 2016YFC0303900)

收稿日期:2019-12-24

修改稿日期:2020-03-27

网络出版日期:--

作者单位    点击查看

周心禺:中国科学院安徽光学精密机械研究所基础科学中心, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
董洋:中国科学院安徽光学精密机械研究所基础科学中心, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
王坤阳:中国科学院安徽光学精密机械研究所基础科学中心, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
刘锟:中国科学院安徽光学精密机械研究所基础科学中心, 安徽 合肥 230031
高晓明:中国科学院安徽光学精密机械研究所基础科学中心, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026

联系人作者:周心禺(zhouxinyuustc@163.com)

备注:周心禺 (1994-), 福建漳州人,研究生,主要从事光谱测量仪器方面的研究。

【1】Shao L G, Fang B, Zheng F, et al. Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3 μm DFB laser[J]. Spectrochimica Acta Part A- Molecular and Biomolecular Spectroscopy, 2019, 222(5): 117-118.

【2】Shao L G, Fang B, Zheng F, et al. Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3 μm DFB laser[J]. Spectrochimica Acta Part A- Molecular and Biomolecular Spectroscopy, 2019, 222(5): 117-118.

【3】Jia Liangquan, Liu Wenqing, Liu Jianguo, et al. Effects of temperature and pressure changes on the second harmonic inversion results[J]. Chinese Journal of Lasers (中国激光), 2014, 41(12): 266-273 (in Chinese).

【4】Jia Liangquan, Liu Wenqing, Liu Jianguo, et al. Effects of temperature and pressure changes on the second harmonic inversion results[J]. Chinese Journal of Lasers (中国激光), 2014, 41(12): 266-273 (in Chinese).

【5】Chen Zhou, Tao Shaohua, Du Xiangjun, et al. Accurate calculation of spectral line profiles by considering influence of varying pressure and temperature in a gas[J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2013, 33(2): 26-29 (in Chinese).

【6】Chen Zhou, Tao Shaohua, Du Xiangjun, et al. Accurate calculation of spectral line profiles by considering influence of varying pressure and temperature in a gas[J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2013, 33(2): 26-29 (in Chinese).

【7】Shao Junyi, Lin Zhaoxiang, Liu Linmei, et al. Measurement of absorption spectrum around 1.572 μm[J]. Acta Physica Sinica (物理学报), 2017, 6(10): 141-148 (in Chinese).

【8】Shao Junyi, Lin Zhaoxiang, Liu Linmei, et al. Measurement of absorption spectrum around 1.572 μm[J]. Acta Physica Sinica (物理学报), 2017, 6(10): 141-148 (in Chinese).

【9】Chen Hao, Ju Yu, Han Li, et al. Effects of temperature of laser shell on background signals for trace gas detection in TDLAS[J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2018, 38(6): 16-20 (in Chinese).

【10】Chen Hao, Ju Yu, Han Li, et al. Effects of temperature of laser shell on background signals for trace gas detection in TDLAS[J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2018, 38(6): 16-20 (in Chinese).

【11】Yang Gang, Chen Jiajin, Wang Guishi, et al. Design of temprature and pressure control system in device measuring carbon isotope in CH4[J]. Coal Technology (煤炭技术), 2018, 37(8): 314-317 (in Chinese).

【12】Yang Gang, Chen Jiajin, Wang Guishi, et al. Design of temprature and pressure control system in device measuring carbon isotope in CH4[J]. Coal Technology (煤炭技术), 2018, 37(8): 314-317 (in Chinese).

【13】Li Hanchao, Liu Shoudong, Deng Lichen, et al. The constant temperature improvement and calibration method of LI-840A CO2/H2O gas analyzer[J]. Science Technology and Engineering (科学技术与工程), 2014, 14(20): 5-11 (in Chinese).

【14】Li Hanchao, Liu Shoudong, Deng Lichen, et al. The constant temperature improvement and calibration method of LI-840A CO2/H2O gas analyzer[J]. Science Technology and Engineering (科学技术与工程), 2014, 14(20): 5-11 (in Chinese).

【15】Zhao Weixiong, Gao Xiaoming, Zhang Weijun, et al. High-sensitivity off-axis integrated cavity output spectroscopy[J]. Acta Optica Sinica (光学学报), 2006, 2(8): 1260-1264 (in Chinese).

【16】Zhao Weixiong, Gao Xiaoming, Zhang Weijun, et al. High-sensitivity off-axis integrated cavity output spectroscopy[J]. Acta Optica Sinica (光学学报), 2006, 2(8): 1260-1264 (in Chinese).

【17】Wang B Q, Wang Z R, Yang L L. Design of embedded meteorological data acquisition system based on CANopen[C]. International Conference on Electrical & Control Engineering, 2010: 732-735.

【18】Wang B Q, Wang Z R, Yang L L. Design of embedded meteorological data acquisition system based on CANopen[C]. International Conference on Electrical & Control Engineering, 2010: 732-735.

【19】Su Rui, Guo Huan, Fan Yisong, et al. Design of pulse laser intelligent control system based on STM32[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2019, 3(2): 35-41 (in Chinese).

【20】Su Rui, Guo Huan, Fan Yisong, et al. Design of pulse laser intelligent control system based on STM32[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2019, 3(2): 35-41 (in Chinese).

【21】Wen Bo, Meng Lingjun, Zhang Xiaochun, et al. Design of water temperature automatic controller based on incremental PID algorithm[J]. Instrument Technique and Sensor (仪表技术与传感器), 2015, 12: 113-11(in Chinese).

【22】Wen Bo, Meng Lingjun, Zhang Xiaochun, et al. Design of water temperature automatic controller based on incremental PID algorithm[J]. Instrument Technique and Sensor (仪表技术与传感器), 2015, 12: 113-11(in Chinese).

【23】Guo Fengling, Xu Guangping, Huang Baoku. Constant temperature control systems for semiconductor lasers based on DRV595[J]. Laser Technology (激光技术), 2017, 41(5): 735-737 (in Chinese).

【24】Guo Fengling, Xu Guangping, Huang Baoku. Constant temperature control systems for semiconductor lasers based on DRV595[J]. Laser Technology (激光技术), 2017, 41(5): 735-737 (in Chinese).

【25】Li Jiarong. Design and application of high precision temperature control system[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2016, 33(5): 614-617 (in Chinese).

【26】Li Jiarong. Design and application of high precision temperature control system[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2016, 33(5): 614-617 (in Chinese).

引用该论文

ZHOU Xinyu,DONG Yang,WANG Kunyang,LIU Kun,GAO Xiaoming. Design of high-precision temperature and pressure control system for spectral measuring instrument[J]. Chinese Journal of Quantum Electronics, 2020, 37(3): 266-272

周心禺,董洋,王坤阳,刘锟,高晓明. 用于光谱测量仪器的高精度温压控制系统设计[J]. 量子电子学报, 2020, 37(3): 266-272

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF