Photonic Sensors, 2020, 10 (1): 57, Published Online: Dec. 23, 2020   

A High Spatial Resolution FBG Sensor Array for Measuring Ocean Temperature and Depth

Author Affiliations
1 State Key Laboratories of Transducer Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Abstract
Exploring and understanding the ocean is an important field of scientific study. Acquiring accurate and high-resolution temperature and depth profiles of the oceans over relatively short periods of time is an important basis for understanding ocean currents and other associated physical parameters. Traditional measuring instruments based on piezoelectric ceramics have a low spatial resolution and are not inherently waterproof. Meanwhile, sensing systems based on fiber Bragg grating (FBG) have the advantage of facilitating continuous measurements and allow multi-sensor distributed measurements. Therefore, in this paper, an all-fiber seawater temperature and depth-sensing array is used to obtain seawater temperature and depth profiles. In addition, by studying the encapsulation structure of the FBG sensors, this paper also solves the problem of the measurement error present in traditional FBG sensors when measuring seawater temperature. Through a theoretical analysis and seaborne test in the Yellow Sea of China, the sampling frequency of the all-fiber seawater temperature and depth profile measurement system is 1 Hz, the accuracy of the FBG sensors reaches 0.01 ℃, and the accuracy of the FBG depth sensors reaches 0.1 % of the full scale. The resulting parameters for these sensors are therefore considered to be acceptable for most survey requirements in physical oceanography.

Li WANG, Yongjie WANG, Jianfeng WANG, Fang LI. A High Spatial Resolution FBG Sensor Array for Measuring Ocean Temperature and Depth[J]. Photonic Sensors, 2020, 10(1): 57.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!