量子光学学报, 2020, 26 (3): 271, 网络出版: 2020-12-25  

基于内腔单-双暗态转换的全光开关

All Optical Switching based on the Conversion of Intracavity Single- and Double-dark State
作者单位
山西大学 物理电子工程学院,山西 太原 030006
摘要
本文基于原子-腔复合系统,通过对单次穿过内腔原子的耦合场的调控,实现了在原子共振中心附近,腔透射峰由单暗态向双暗态的转换,即当行波耦合场被驻波代替时,在原子共振中心,单暗态极子峰消失,同时在共振中心两侧会对称出现双暗态极子峰。理论上,结合内腔原子的吸收特性及热原子表现出的多普勒效应,得出速度不为0的原子是导致产生双暗态峰的主要诱因。实验上,通过额外引入一束反向传输的相干泵浦光,使双暗态信号放大8倍左右,有效地提高了隔离比。在此基础上,利用方波脉冲对反向耦合场的调制,实现在单一空间通道上3个不同频率信道(Δp=0,±δ)的高效光控全光开关,该结论可应用于光学二极管及量子逻辑门运算。
Abstract
In this paper,based on the atom-cavity composite system,the transformation of the cavity transmission peak from single dark state to double dark state near the resonance center of the atom is realized by adjusting the coupling field which singly passes through the inner cavity atom.That is,when the traveling wave coupling field is replaced by the standing wave,the single dark state pole peak disappears in the atomic resonance center,and the double dark state peaks appear symmetrically on both sides of the resonance center.Theoretically,considering the absorption characteristics of the intracavity atoms and the Doppler effect of the hot atom,it is concluded that the atoms with v≠0 are the main inducement to produce the double dark state peaks.In the experiment,the double dark state signals are amplified about 8 times by introducing an additional coherent pump beam which transmits in the reverse direction,and the isolation ratio is effectively increased.On this basis,we use the square wave pulse to modulate the couter-propagating coupling field to realize the efficient all-optical switch with three different frequency channels (Δp=0,±δ) on a single space channel.The conclusion can be applied to the optical diode and quantum logic gate operation.

周海涛, 李瑞峰, 戴玉鹏, 郭瑞翔, 王丹, 杨保东. 基于内腔单-双暗态转换的全光开关[J]. 量子光学学报, 2020, 26(3): 271. ZHOU Hai-tao, LI Rui-feng, DAI Yu-peng, GUO Rui-xiang, WANG Dan, YANG Bao-dong. All Optical Switching based on the Conversion of Intracavity Single- and Double-dark State[J]. Acta Sinica Quantum Optica, 2020, 26(3): 271.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!