首页 > 论文 > 激光与光电子学进展 > 57卷 > 9期(pp:91801--1)

并行STED显微中光学系统对荧光擦除图案的影响

Effect of Optical System on the Fluorescence Depletion Pattern in the Parallelized STED Microscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

并行受激发射损耗(STED)显微术采用周期性排列的光学格子作为荧光抑制图案并行实现多点荧光擦除,可以有效地提升显微成像的时间分辨率。本文建立了并行STED显微成像系统的简化光学系统模型,在此基础上推导出受光学参数影响的并行荧光擦除图案周期公式,来阐明辅助物镜及显微物镜对该周期的影响机理。由该公式,解出了能产生更小周期并行荧光擦除图案的最优光学参数。数值仿真结果显示,本文方法能产生出周期小至276 nm×276 nm的正方形网格状并行荧光擦除图案。

Abstract

In a stimulated emission depletion (STED) microscopy, a periodically arranged optical lattices is used as fluorescence depletion pattern to achieve parallelized multi-point fluorescence depletion, which can effectively improve the time resolution of imaging. We propose a simple optical system model of microscopic imaging system in parallelized STED microscopy and derive out a formula to illuminate the effect mechanism of tube lens and microscope objective on parallelized fluorescence depletion pattern periodicity in the model. Then we work out the optimum optical parameters which are used to generate a parallelized fluorescence depletion pattern with smaller periodicity from our formula. The numerical simulation result shows that square lattice-like parallelized fluorescence depletion pattern with a periodicity as small as 276 nm× 276 nm was generated with our method.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TH742

DOI:10.3788/LOP57.091801

所属栏目:显微

收稿日期:2019-09-17

修改稿日期:2019-09-26

网络出版日期:2020-05-01

作者单位    点击查看

张硕晨:北京工业大学生命科学与生物医学工程学院, 智能化生理测量与临床转化北京市国际科技合作基地, 北京 100024
冯继宏:北京工业大学生命科学与生物医学工程学院, 智能化生理测量与临床转化北京市国际科技合作基地, 北京 100024

联系人作者:冯继宏(jhfeng@bjut.edu.cn)

【1】Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy [J]. Optics Letters. 1994, 19(11): 780-782.

【2】Klar T A, Hell S W. Subdiffraction resolution in far-field fluorescence microscopy [J]. Optics Letters. 1999, 24(14): 954-956.

【3】Huang B, Babcock H, Zhuang X W. Breaking the diffraction barrier: super-resolution imaging of cells [J]. Cell. 2010, 143(7): 1047-1058.

【4】Jin L J, He Y, Qu L X, et al. Analysis of new super-resolution microscopy technology [J]. Laser & Optoelectronics Progress. 2018, 55(3): 030006.
金录嘉, 何洋, 瞿璐茜, 等. 新型超分辨显微技术浅析 [J]. 激光与光电子学进展. 2018, 55(3): 030006.

【5】Peng D M, Fu Z F, Xu P Y. Fluorescent proteins and super-resolution microscopy [J]. Acta Optica Sinica. 2017, 37(3): 0318008.
彭鼎铭, 付志飞, 徐平勇. 荧光蛋白与超分辨显微成像 [J]. 光学学报. 2017, 37(3): 0318008.

【6】Xu Y W, Zhang Y H, Yang H M, et al. Imaging technology of reduced photobleaching based on controllable light exposure-confocal microscopy [J]. Chinese Journal of Lasers. 2018, 45(4): 0407001.
徐依雯, 张运海, 杨皓旻, 等. 基于可控光剂量的低荧光漂白共聚焦成像技术 [J]. 中国激光. 2018, 45(4): 0407001.

【7】Li H, Xia X Y, Chen T A, et al. Applications of two-photon excitation fluorescence lifetime imaging in tumor diagnosis [J]. Chinese Journal of Lasers. 2018, 45(2): 0207010.
李慧, 夏先园, 陈廷爱, 等. 双光子荧光寿命成像在肿瘤诊断研究中的应用 [J]. 中国激光. 2018, 45(2): 0207010.

【8】Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. SHORT COMMUNICATION [J]. Journal of Microscopy. 2000, 198(2): 82-87.

【9】Bingen P, Reuss M, Engelhardt J, et al. Parallelized STED fluorescence nanoscopy [J]. Optics Express. 2011, 19(24): 23716-23726.

【10】Chmyrov A, Keller J, Grotjohann T, et al. Nanoscopy with more than 100, 000 ‘doughnuts’ [J]. Nature Methods. 2013, 10(8): 737-740.

【11】Yang B, Przybilla F, Mestre M, et al. Large parallelization of STED nanoscopy using optical lattices [J]. Optics Express. 2014, 22(5): 5581-5589.

【12】Yang B, Fang C Y, Chang H C, et al. Polarization effects in lattice-STED microscopy [J]. Faraday Discussions. 2015, 184: 37-49.

【13】Xiao Y, Zhang Y H, Shi Y Q, et al. The study on optical lattice formed by four-beam interference [J]. Optik. 2016, 127(22): 10421-10427.

【14】Keller J, Sch?nle A, Hell S W. Efficient fluorescence inhibition patterns for RESOLFT microscopy [J]. Optics Express. 2007, 15(6): 3361-3371.

【15】Bergermann F, Alber L, Sahl S J, et al. 2000-fold parallelized dual-color STED fluorescence nanoscopy [J]. Optics Express. 2015, 23(1): 211-223.

【16】Yuan L, Wang G P, Huang X K. Arrangements of four beams for any Bravais lattice [J]. Optics Letters. 2003, 28(19): 1769-1771.

【17】Yang X L, Cai L Z, Wang Y R, et al. Interference of four umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional square and trigonal lattices [J]. Optics Letters. 2003, 28(6): 453-455.

【18】Cai L Z, Yang X L, Wang Y R. All fourteen Bravais lattices can be formed by interference of four noncoplanar beams [J]. Optics Letters. 2002, 27(11): 900-902.

【19】Li X T, Cen Z F. Geometrical optics, aberrations and optical design[M]. Hangzhou: Zhejiang University Press, 2014, 35-56.
李晓彤, 岑兆丰. 几何光学·像差·光学设计[M]. 杭州: 浙江大学出版社, 2014, 35-56.

【20】Zhang Y M. Apply optics[M]. Beijing: Publishing House of Electronics Industry, 2008, 394-408.
张以谟. 应用光学[M]. 北京: 电子工业出版社, 2008, 394-408.

【21】Warren J S. Modern optical engineering[M]. Zhou H X: Cheng Y F, Transl. 4th ed. Beijing: Chemical Industry Press, 2011, 140-160.
沃伦J史密斯, [M]. 现代光学工程. 周海宪: 程云芳, 译. 第4版. 北京: 化学工业出版社, 2011, 140-160.

【22】-05-14 [P]. Hachioji. Immersion microscope objective: US5517360. 1996.

【23】Liang Q T. Physical optics[M]. Beijing: Electronic Industry Press, 2018, 48-117.
梁铨廷. 物理光学[M]. 第5版. 北京: 电子工业出版社, 2018, 48-117.

【24】Ji J R. Higher optics course-basic electromagnetic theory of optics[M]. Beijing: Science Press, 2007, 97-131.
季家镕. 高等光学教程:光学的基本电磁理论[M]. 北京: 科学出版社, 2007, 97-131.

【25】Liao Y B. Polarization optics[M]. Beijing: Science Press, 2003, 45-63.
廖延彪. 偏振光学[M]. 北京: 科学出版社, 2003, 45-63.

引用该论文

Zhang Shuochen,Feng Jihong. Effect of Optical System on the Fluorescence Depletion Pattern in the Parallelized STED Microscopy[J]. Laser & Optoelectronics Progress, 2020, 57(9): 091801

张硕晨,冯继宏. 并行STED显微中光学系统对荧光擦除图案的影响[J]. 激光与光电子学进展, 2020, 57(9): 091801

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF