首页 > 论文 > 中国激光 > 46卷 > 6期(pp:614023--1)

太赫兹超材料吸收器的完美吸收条件与吸收特性

Perfect Absorption Conditions and Absorption Characteristics of Terahertz Metamaterial Absorber

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种复合结构三频带太赫兹超材料吸收器,其对特定频率的入射太赫兹波呈现出完全吸收的特性。设计的超材料吸收器在入射角度达到50°时仍能保持良好的吸收特性。利用干涉理论分析了完美吸收发生的条件以及介质层介电常数对吸收频率的影响。进一步利用传输线理论结合干涉理论,分析了耶路撒冷十字短边长度对吸收特性的影响,结果表明:随着短边长度增加,吸收峰发生红移。实验结果与仿真、干涉理论、传输线理论中得到的结果吻合得较好,为今后超材料吸收器的设计提供了指导。

Abstract

This study presents the design of a triple-band metamaterial absorber with a composite structure that can fully absorb the incident terahertz radiation at a certain frequency. The absorption remains high at incident angles up to 50°. The conditions for perfect absorption and the frequency shift caused by the permittivity of the dielectric spacer were analyzed via the interference theory. Further, the effect of the length of the Jerusalem cross on absorption was analyzed by applying the transmission line theory combined with the interference theory. With the increase of the short edge length, the absorption peak redshifts. The experimental results are consistent with those from the simulation, the interference theory, and the transmission line theory, thus the results here provide guidance for the design of a metamaterial absorber.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TB34

DOI:10.3788/CJL201946.0614023

所属栏目:太赫兹技术

基金项目:国家自然科学基金、黑龙江省博士后科研启动基金、陕西省教育厅自然科学专项;

收稿日期:2019-01-31

修改稿日期:2019-03-11

网络出版日期:2019-06-14

作者单位    点击查看

崔子健:哈尔滨理工大学工程电介质及其应用教育部重点实验室, 黑龙江 哈尔滨 150080西安理工大学理学院, 陕西 西安 710048
王玥:西安理工大学理学院, 陕西 西安 710048
朱冬颖:哈尔滨理工大学工程电介质及其应用教育部重点实验室, 黑龙江 哈尔滨 150080西安理工大学理学院, 陕西 西安 710048
岳莉莎:西安理工大学理学院, 陕西 西安 710048
陈素果:西安理工大学理学院, 陕西 西安 710048

联系人作者:王玥(wangyue2017@xaut.edu.cn)

备注:国家自然科学基金、黑龙江省博士后科研启动基金、陕西省教育厅自然科学专项;

【1】Savo S, Shrekenhamer D and Padilla W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications. Advanced Optical Materials. 2(3), 275-279(2014).

【2】Nouri-Novin S, Sadatgol M and Zarrabi F B. et al. A hollow rectangular plasmonic absorber for nano biosensing applications. Optik. 176, 14-23(2019).

【3】Hu X, Xu G Q and Wen L. et al. Metamaterial absorber integrated microfluidic terahertz sensors. Laser & Photonics Reviews. 10(6), 962-969(2016).

【4】Meng T H, Hu D and Zhu Q F. Design of a five-band terahertz perfect metamaterial absorber using two resonators. Optics Communications. 415, 151-155(2018).

【5】Wang G Z and Wang B X. Five-band terahertz metamaterial absorber based on a four-gap comb resonator. Journal of Lightwave Technology. 33(24), 5151-5156(2015).

【6】Landy N I, Sajuyigbe S and Mock J J. et al. Perfect metamaterial absorber. Physical Review Letters. 100(20), (2008).

【7】Shen X P, Yang Y and Zang Y Z. et al. Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Applied Physics Letters. 101(15), (2012).

【8】Meng H Y, Wang L L and Zhai X. et al. A simple design of a multi-band terahertz metamaterial absorber based on periodic square metallic layer with T-shaped gap. Plasmonics. 13(1), 269-274(2018).

【9】Zi J C, Xu Q and Wang Q. et al. Antireflection-assisted all-dielectric terahertz metamaterial polarization converter. Applied Physics Letters. 113(10), (2018).

【10】Liu S J, Zang X F and Zhu Y M. Dual-band terahertz linear-to-circular polarization converter based on single-layer metasurface. Optical Instruments. 39(3), 16-20(2017).
刘素吉, 臧小飞, 朱亦鸣. 基于单层超表面的双频太赫兹波线偏振变圆偏振转换器. 光学仪器. 39(3), 16-20(2017).

【11】Liu J Y, Li Z C and Liu W W. et al. High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces. Advanced Optical Materials. 4(12), 2028-2034(2016).

【12】Sun H H, Yan F P, Tan S Y et al. Simulation analysis on design of permeability-near-zero terahertz metamaterials. Chinese Journal of Lasers. 45(6), (2018).
孙慧慧, 延凤平, 谭思宇 等. 磁导率近零太赫兹超材料设计的仿真分析. 中国激光. 45(6), (2018).

【13】Landy N I, Bingham C M and Tyler T. et al. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B. 79(12), (2009).

【14】Pan W, Yu X, Zhang J et al. Absorption characteristics analysis of a terahertz metamaterial absorber based on double split square patches. Applied Laser. 36(3), 346-350(2016).
潘武, 余璇, 张俊 等. 基于双开口方形薄片的太赫兹超材料吸收器吸收特性分析. 应用激光. 36(3), 346-350(2016).

【15】Mo M M, Wen Q Y, Chen Z et al. A polarization-independent and ultra-broadband terahertz metamaterial absorber studied based on circular-truncated cone structure. Acta Physica Sinica. 62(23), (2013).
莫漫漫, 文岐业, 陈智 等. 基于圆台结构的超宽带极化不敏感太赫兹吸收器. 物理学报. 62(23), (2013).

【16】Ma Y B, Zhang H W, Li Y X et al. Study on a novel dual-band metamaterial absorber by using fractal Koch curves. Acta Physica Sinica. 63(11), (2014).
马岩冰, 张怀武, 李元勋 等. 基于科赫分形的新型超材料双频吸收器. 物理学报. 63(11), (2014).

【17】Chen H T. Interference theory of metamaterial perfect absorbers. Optics Express. 20(7), 7165-7172(2012).

【18】Wen Q Y, Xie Y S and Zhang H W. et al. Transmission line model and fields analysis of metamaterial absorber in the terahertz band. Optics Express. 17(22), 20256-20265(2009).

【19】Costa F, Genovesi S and Monorchio A. et al. A circuit-based model for the interpretation of perfect metamaterial absorbers. IEEE Transactions on Antennas and Propagation. 61(3), 1201-1209(2013).

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF