Photonics Research, 2020, 8 (4): 04000622, Published Online: Apr. 1, 2020  

Towards simultaneous observation of path and interference of a single photon in a modified Mach–Zehnder interferometer Download: 619次

Author Affiliations
1 School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2 College of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
3 e-mail: phzyli@scut.edu.cn
4 e-mail: xuewen_chen@hust.edu.cn
Abstract
Classical wisdom of wave–particle duality regulates that a quantum object shows either the particle or wave nature but never both. Consequently, it would be impossible to observe simultaneously the complete wave and particle nature of the quantum object. Mathematically the principle requests that the interference visibility V and which-path distinguishability D satisfy an orthodox limit of V2+D21. The present work reports a new wave–particle duality test experiment using single photons in a modified Mach–Zehnder interferometer to demonstrate the possibility of breaking the limit. The key element of the interferometer is a weakly scattering total internal reflection prism surface, which exhibits a pronounced single-photon interference with a visibility of up to 0.97 and simultaneously provides a path distinguishability of 0.83. Apparently, the result of V2+D21.63 exceeds the orthodox limit set by the classical principle of wave–particle duality for single photons. We expect that more delicate experiments in the future should be able to demonstrate the ultimate limit of V2+D22 and shed new light on the foundations of contemporary quantum mechanics.

Fenghua Qi, Zhiyuan Wang, Weiwang Xu, Xue-Wen Chen, Zhi-Yuan Li. Towards simultaneous observation of path and interference of a single photon in a modified Mach–Zehnder interferometer[J]. Photonics Research, 2020, 8(4): 04000622.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!