首页 > 论文 > 光学学报 > 40卷 > 10期(pp:1031001--1)

周期性微结构对红外场景生成芯片空间分辨率的影响

Spatial Resolution of Infrared Scene Projector Chip with Periodical Microstructure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种通过制作面内微结构来提高红外场景生成芯片空间分辨率的方法。通过建立简化的二维热传导模型,计算了具有周期性微结构的芯片空间分辨率。通过分析微结构接触面积比及填充因子对红外场景生成芯片空间分辨率的影响,实现了周期性微结构的优化设计。理论计算表明,空间分辨率随微结构接触面积比的减小而增大,随填充因子的增大而增大。考虑到制备精度,当微结构的接触面积比为0.18、填充因子为0.52时,芯片在对比度调制传递函数(MTF)值为0.3时的空间分辨率为10.3 lp·mm -1,是无微结构芯片的两倍。实验制备了两种具有不同接触面积比和填充因子的红外场景生成芯片,芯片直径为7.62 cm,厚度约为800 nm。采用非接触式稳态热成像法对所制作的转换芯片的空间分辨率进行了测量。测量结果表明,接触面积比为0.20和0.46的两个微结构芯片在MTF值为0.3时的空间分辨率分别为11.2 lp·mm -1和6.6 lp·mm -1。实验结果与理论计算吻合较好,说明所提方法是一种实用、有效的空间分辨率优化方法。

Abstract

A method for improving the spatial resolution of an infrared scene projector chip is proposed by making in-plane microstructures. By establishing a simplified two-dimensional heat conduction model, the spatial resolution of the chip with periodical microstructure is calculated. On this basis, the influences of contact area ratio and filling factor of microstructure on the spatial resolution of this infrared scene projector chip are studied and the optimization design of periodical microstructure is realized. The theoretical calculation shows that by fabricating the microstructure with a contact area ratio of 0.18 and a filling factor of 0.52, the spatial resolution can be improved to 10.3 lp·mm -1 at an MTF of 0.3, twice that of the chip without microstructure. Two kinds of infrared scene projector chips with different contact area ratios and filling factors are fabricated. The diameter of the chip is 7.62 cm and the thickness is about 800 nm. Using the non-contact steady-state infrared imaging method, the spatial resolutions of these two chips are measured. When the MTF value is 0.3, the spatial resolutions of the chips with contact area ratios of 0.20 and 0.46 are 11.2 lp·mm -1 and 6.6 lp·mm -1, respectively. Our experimental results coincide well with those of the theoretical calculation, indicating that the proposed method is effective and practical for spatial resolution improvement.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN214

DOI:10.3788/AOS202040.1031001

所属栏目:薄膜

基金项目:国家自然科学基金;

收稿日期:2019-12-16

修改稿日期:2020-02-17

网络出版日期:2020-05-01

作者单位    点击查看

赵乾:北京理工大学光电学院, 北京 100081北京市精密光电测量仪器与技术重点实验室, 北京 100081
李卓:北京理工大学光电学院, 北京 100081北京市精密光电测量仪器与技术重点实验室, 北京 100081
王欣:北京理工大学光电学院, 北京 100081北京市精密光电测量仪器与技术重点实验室, 北京 100081
李德芳:北京理工大学光电学院, 北京 100081北京市精密光电测量仪器与技术重点实验室, 北京 100081
徐立强:北京理工大学光电学院, 北京 100081北京市精密光电测量仪器与技术重点实验室, 北京 100081

联系人作者:王欣(wangxin@bit.edu.cn)

备注:国家自然科学基金;

【1】Li Z, Zhou L, Liu D, et al. Wide-band dynamic infrared scene generation technology [J]. Aerospace Shanghai. 2019, 36(4): 31-36, 70.
李卓, 周朗, 刘丹, 等. 宽波段动态红外场景生成技术 [J]. 上海航天. 2019, 36(4): 31-36, 70.

【2】Li Z, Qian L X, Ou W. New technologies of infrared scene projection [J]. Infrared and Laser Engineering. 2012, 41(1): 1-6.
李卓, 钱丽勋, 欧文. 动态红外场景生成新技术 [J]. 红外与激光工程. 2012, 41(1): 1-6.

【3】Shi R, Xu C, Xu R, et al. Infrared dynamic scenes generating technique based on MEMS [J]. Infrared and Laser Engineering. 2016, 45(2): 67-71.
施蕊, 徐畅, 徐锐, 等. 基于MEMS的红外动态图像生成技术 [J]. 红外与激光工程. 2016, 45(2): 67-71.

【4】Yang Y, Nuo S, Zhou L, et al. A light down conversion infrared scene projector [J]. SPIE. 2015, 9677: 967708.

【5】Ma B, Cheng Z X, Zhai H M, et al. Development of domestic resistive arrays technology [J]. Infrared and Laser Engineering. 2011, 40(12): 2314-2322, 2327.
马斌, 程正喜, 翟厚明, 等. 国产电阻阵列技术的发展趋势 [J]. 红外与激光工程. 2011, 40(12): 2314-2322, 2327.

【6】Tom D, Greg F, Nicholas H, et al. Achieving ultra-high temperatures with a resistive emitter array [J]. SPIE. 2016, 9820: 98200Z.

【7】Han Q, Zhang J, Wang J, et al. Diffraction analysis for DMD-based scene projectors in the long-wave infrared [J]. Applied Optics. 2016, 55(28): 8016-8021.

【8】Khalifa A A, Aly H A. Near-infrared video projection system based on digital micromirror devices and digital signal processors [J]. Optical Engineering. 2015, 54(12): 123102.

【9】Julia R, David J, Robert V, et al. Two-band DMD-based infrared scene simulator [J]. SPIE. 2010, 7663: 766302.

【10】Zhang L, Tian Y, Li Q. Research status and prospect of dynamic infrared scene projector [J]. Infrared and Laser Engineering. 2012, 41(6): 1423-1431.
张励, 田义, 李奇. 动态红外场景投影器的研究现状与展望 [J]. 红外与激光工程. 2012, 41(6): 1423-1431.

【11】Li Z. Characteristics of visible to infrared transducer films for dynamic image simulation [J]. Journal of Beijing Institute of Technology. 2003, 23(4): 473-476.
李卓. 可见光/红外动态图像转换薄膜性质的研究 [J]. 北京理工大学学报. 2003, 23(4): 473-476.

【12】Li P, Li Z. Conceptual research on the dynamic IR scenegeneration [J]. Optical Technique. 2006, 32(S1): 525-527.
李平, 李卓. 红外动态图像生成技术概念研究 [J]. 光学技术. 2006, 32(S1): 525-527.

【13】Kurabayashi K, Asheghi M, Touzelbaev M, et al. Measurement of the thermal conductivity anisotropy in polyimide films [J]. Journal of Microelectromechanical Systems. 1999, 8(2): 180-191.

【14】Wolf A, Pohl P, Brendel R. Thermophysical analysis of thin films by lock-in thermography [J]. Journal of Applied Physics. 2004, 96(11): 6306-6312.

【15】Chen Q Y, Wang H J, Wang X, et al. Estimation of the spatial resolution of infrared scene generator [J]. Optical Technique. 2015, 41(1): 85-88.
陈倩祎, 王宏杰, 王欣, 等. 红外动态场景生成装置空间分辨率的测试 [J]. 光学技术. 2015, 41(1): 85-88.

【16】Luo Y Y, Zhu X F. Effects of thermal evaporation and electron beam evaporation on two-dimensional patterned Ag nanostructure during nanosphere lithography [J]. Acta Physica Sinica. 2011, 60(8): 086104.
罗银燕, 朱贤方. 电阻热蒸发镀膜与电子束蒸发镀膜对纳米球刻蚀方法制备二维银纳米阵列结构的影响 [J]. 物理学报. 2011, 60(8): 086104.

引用该论文

Zhao Qian,Li Zhuo,Wang Xin,Li Defang,Xu Liqiang. Spatial Resolution of Infrared Scene Projector Chip with Periodical Microstructure[J]. Acta Optica Sinica, 2020, 40(10): 1031001

赵乾,李卓,王欣,李德芳,徐立强. 周期性微结构对红外场景生成芯片空间分辨率的影响[J]. 光学学报, 2020, 40(10): 1031001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF