Photonics Research, 2020, 8 (10): 10001653, Published Online: Sep. 30, 2020   

Quantum-enhanced stochastic phase estimation with the SU(1,1) interferometer Download: 691次

Author Affiliations
1 National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
2 Center for Quantum Science and Technology, Jiangxi Normal University, Nanchang 330022, China
3 State Key Laboratory of Precision Spectroscopy, Joint Institute of Advanced Science and Technology, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
4 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
5 e-mail: jtjing@phy.ecnu.edu.cn
6 e-mail: lijian.zhang@nju.edu.cn
Abstract
Quantum stochastic phase estimation has many applications in the precise measurement of various physical parameters. Similar to the estimation of a constant phase, there is a standard quantum limit for stochastic phase estimation, which can be obtained with the Mach–Zehnder interferometer and coherent input state. Recently, it has been shown that the stochastic standard quantum limit can be surpassed with nonclassical resources such as squeezed light. However, practical methods to achieve quantum enhancement in the stochastic phase estimation remain largely unexplored. Here we propose a method utilizing the SU(1,1) interferometer and coherent input states to estimate a stochastic optical phase. As an example, we investigate the Ornstein–Uhlenback stochastic phase. We analyze the performance of this method for three key estimation problems: prediction, tracking, and smoothing. The results show significant reduction of the mean square error compared with the Mach–Zehnder interferometer under the same photon number flux inside the interferometers. In particular, we show that the method with the SU(1,1) interferometer can achieve fundamental quantum scaling, achieve stochastic Heisenberg scaling, and surpass the precision of the canonical measurement.

Kaimin Zheng, Minghao Mi, Ben Wang, Liang Xu, Liyun Hu, Shengshuai Liu, Yanbo Lou, Jietai Jing, Lijian Zhang. Quantum-enhanced stochastic phase estimation with the SU(1,1) interferometer[J]. Photonics Research, 2020, 8(10): 10001653.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!