首页 > 论文 > 光学学报 > 40卷 > 2期(pp:0214001--1)

基于空芯光子晶体光纤的单程高效氘气转动拉曼激光光源

Single-Pass High-Efficiency Rotational Raman Laser Source Based on Deuterium-Filled Hollow-Core Photonic Crystal Fiber

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

报道了一种基于空芯光子晶体光纤中氘气转动受激拉曼散射的单程高效光纤气体激光光源。因空芯光子晶体光纤具有特殊的传输谱,增益相对较大的振动受激拉曼散射被很好地抑制,使得泵浦激光能够高效地向转动斯托克斯光转化。采用自行搭建的1540 nm纳秒脉冲光纤放大器,泵浦一段长为20 m、充高压氘气的空芯光子晶体光纤,在单程结构中实现了高效的1645 nm拉曼激光输出。当气压为2 MPa时,最大平均输出功率约为0.8 W(单脉冲能量约为1.6 μJ),激光光源斜率效率约为71.4%。研究结果为1.7 μm波段光纤激光的实现提供了一条简单有效的新途径。

Abstract

In this study, a high-efficiency fiber gas laser source is developed in a single-pass deuterium-filled hollow-core photonic crystal fiber by rotational stimulated Raman scattering (SRS). The ordinary dominant vibrational SRS with relatively large gain is suppressed because of the special transmission properties of this low-loss hollow-core photonic crystal fiber, permitting its efficient conversion to a rotational Stokes wave. A homemade 1540-nm nanosecond pulsed fiber amplifier is used to pump a hollow-core photonic crystal fiber having a length of 20 m with a high-pressure deuterium gas. Thus, a high-efficiency 1645-nm Raman laser is obtained using a single-pass configuration. A maximum average output power of ~0.8 W (single-pulse energy of ~1.6 μJ) can be obtained with respect to the 1645-nm Raman laser at a pressure of 2 MPa, and the slope efficiency is observed to be ~71.4%. This study introduces a simple and effective way for the realization of 1.7-μm-band fiber lasers.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN24

DOI:10.3788/AOS202040.0214001

所属栏目:激光器与激光光学

基金项目:国家自然科学基金、湖南省自然科学基金杰出青年科学基金;

收稿日期:2019-07-29

修改稿日期:2019-09-19

网络出版日期:2020-02-01

作者单位    点击查看

崔宇龙:国防科技大学前沿交叉学科学院脉冲功率激光技术国家重点实验室, 高能激光技术湖南省重点实验室, 湖南 长沙 410073
黄威:国防科技大学前沿交叉学科学院脉冲功率激光技术国家重点实验室, 高能激光技术湖南省重点实验室, 湖南 长沙 410073
周智越:国防科技大学前沿交叉学科学院脉冲功率激光技术国家重点实验室, 高能激光技术湖南省重点实验室, 湖南 长沙 410073
李智贤:国防科技大学前沿交叉学科学院脉冲功率激光技术国家重点实验室, 高能激光技术湖南省重点实验室, 湖南 长沙 410073
王泽锋:国防科技大学前沿交叉学科学院脉冲功率激光技术国家重点实验室, 高能激光技术湖南省重点实验室, 湖南 长沙 410073

联系人作者:王泽锋(hotrosemaths@163.com)

备注:国家自然科学基金、湖南省自然科学基金杰出青年科学基金;

【1】Minck R W, Terhune R W, Rado W G. Laser-stimulated Raman effect and resonant four-photon interactions in gases H2, D2, and CH4 [J]. Applied Physics Letters. 1963, 3(10): 181-184.

【2】Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air [J]. Science. 1999, 285(5433): 1537-1539.

【3】Couny F, Benabid F, Light P S. Large-pitch kagome-structured hollow-core photonic crystal fiber [J]. Optics Letters. 2006, 31(24): 3574-3576.

【4】Pryamikov A D, Biriukov A S, Kosolapov A F, et al. Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5 μm [J]. Optics Express. 2011, 19(2): 1441-1448.

【5】Yu F, Wadsworth W J, Knight J C. Low loss silica hollow core fibers for 3-4 μm spectral region [J]. Optics Express. 2012, 20(10): 11153-11158.

【6】Yu F, Knight J C. Negative curvature hollow-core optical fiber [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2016, 22(2): 146-155.

【7】Gao S F, Wang Y Y, Ding W, et al. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss [J]. Nature Communications. 2018, 9: 2828.

【8】Habib M S. Antonio-Lopez J E, Markos C, et al. Single-mode, low loss hollow-core anti-resonant fiber designs [J]. Optics Express. 2019, 27(4): 3824-3836.

【9】Benabid F, Knight J C, Antonopoulos G, et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber [J]. Science. 2002, 298(5592): 399-402.

【10】Benabid F, Bouwmans G, Knight J C, et al. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen [J]. Physical Review Letters. 2004, 93(12): 123903.

【11】Couny F, Benabid F, Light P S. Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber [J]. Physical Review Letters. 2007, 99(14): 143903.

【12】Wang Z F, Yu F, Wadsworth W J, et al. Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering [J]. Laser Physics Letters. 2014, 11(10): 105807.

【13】Gladyshev A V, Kolyadin A N, Kosolapov A F, et al. Efficient 1.9-μm Raman generation in a hydrogen-filled hollow-core fibre [J]. Quantum Electronics. 2015, 45(9): 807-812.

【14】Chen Y, Wang Z, Gu B, et al. Achieving a 1.5 μm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth [J]. Optics Letters. 2016, 41(21): 5118-5121.

【15】Chen Y B, Gu B, Wang Z F, et al. 1.5 μm fiber gas Raman laser source [J]. Acta Optica Sinica. 2016, 36(5): 0506002.
陈育斌, 顾博, 王泽锋, 等. 1.5 μm光纤气体拉曼激光光源 [J]. 光学学报. 2016, 36(5): 0506002.

【16】Wang Z F, Gu B, Chen Y B, et al. Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 1.9-μm fiber gas Raman source [J]. Applied Optics. 2017, 56(27): 7657-7661.

【17】Gladyshev A V, Kosolapov A F, Khudyakov M M, et al. 2.9, 3.3, and 3.5 μm Raman lasers based on revolver hollow-core silica fiber filled by 1H2/D2 gas mixture [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2018, 24(3): 0903008.

【18】Cao L, Gao S F, Peng Z G, et al. High peak power 2.8 μm Raman laser in a methane-filled negative-curvature fiber [J]. Optics Express. 2018, 26(5): 5609-5615.

【19】Li Z X, Huang W, Cui Y L, et al. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8 μm [J]. Optics Letters. 2018, 43(19): 4671-4674.

【20】Astapovich M S, Gladyshev A V, Khudyakov M M, et al. Watt-level nanosecond 4.42-μm Raman laser based on silica fiber [J]. IEEE Photonics Technology Letters. 2019, 31(1): 78-81.

【21】Nampoothiri A V V, Jones A M, Fourcade-Dutin C, et al. Hollow-core optical fiber gas lasers (HOFGLAS): a review [invited] [J]. Optical Materials Express. 2012, 2(7): 948-961.

【22】Zhang Y, Zhang P, Liu P, et al. Fiber light source at 1.7 μm waveband and its applications [J]. Laser & Optoelectronics Progress. 2016, 53(9): 090002.
张岩, 张鹏, 刘鹏, 等. 1.7 μm波段光纤光源研究进展及其应用 [J]. 激光与光电子学进展. 2016, 53(9): 090002.

【23】Daniel J M O, Simakov N, Tokurakawa M, et al. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band [J]. Optics Express. 2015, 23(14): 18269-18276.

【24】Firstov S V, Alyshev S V, Riumkin K E, et al. Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm [J]. Optics Letters. 2015, 40(18): 4360-4363.

【25】Zhang P, Wu D, Du Q L, et al. 1.7 μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission [J]. Applied Optics. 2017, 56(35): 9742-9748.

【26】Li X Q, Gao S F, Wang Y Y, et al. Fusion splice technique of hollow-core photonic crystal fiber [J]. Navigation Positioning and Timing. 2017, 4(6): 102-106.
李晓倩, 高寿飞, 汪滢莹, 等. 空芯光子晶体光纤熔接技术研究 [J]. 导航定位与授时. 2017, 4(6): 102-106.

【27】Chen Y B. Research on 1.5 μm hollow-core fiber gas Raman laser [D]. Changsha: National University of Defense Technology. 2017.
陈育斌. 1.5 μm波段空芯光纤气体Raman激光研究 [D]. 长沙: 国防科技大学. 2017.

【28】Terry N B, Alley T G, Russell T H. An explanation of SRS beam cleanup in graded-index fibers and the absence of SRS beam cleanup in step-index fibers [J]. Optics Express. 2007, 15(26): 17509-17519.

引用该论文

Cui Yulong,Huang Wei,Zhou Zhiyue,Li Zhixian,Wang Zefeng. Single-Pass High-Efficiency Rotational Raman Laser Source Based on Deuterium-Filled Hollow-Core Photonic Crystal Fiber[J]. Acta Optica Sinica, 2020, 40(2): 0214001

崔宇龙,黄威,周智越,李智贤,王泽锋. 基于空芯光子晶体光纤的单程高效氘气转动拉曼激光光源[J]. 光学学报, 2020, 40(2): 0214001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF