Matter and Radiation at Extremes, 2020, 5 (1): 018401, Published Online: Feb. 18, 2020  

Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum

Author Affiliations
1 Lawrence Livermore National Laboratory, Livermore, California 94551, USA
2 University of Rochester, Rochester, New York 14627, USA
3 SLAC National Accelerator, Menlo Park, California 94025, USA
4 University of California Berkeley, Berkeley, California 94720, USA
Abstract
Over the last six years many experiments have been done at the National Ignition Facility to measure the Hugoniot of materials, such as CH plastic at extreme pressures, up to 800 Mbar. The “Gbar” design employs a strong spherically converging shock launched through a solid ball of material using a hohlraum radiation drive. The shock front conditions are characterized using x-ray radiography. In this paper we examine the role of radiation in heating the unshocked material in front of the shock to understand the impact it has on equation of state measurements and how it drives the measured data off the theoretical Hugoniot curve. In particular, the two main sources of radiation heating are the preheating of the unshocked material by the high-energy kilo-electron-volt x-rays in the hohlraum and the heating of the material in front of the shock, as the shocked material becomes hot enough to radiate significantly. Using our model, we estimate that preheating can reach 4 eV in unshocked material, and that radiation heating can begin to drive data off the Hugoniot significantly, as pressures reach above 400 Mb.

Joseph Nilsen, Andrea L. Kritcher, Madison E. Martin, Robert E. Tipton, Heather D. Whitley, Damian C. Swift, Tilo Döppner, Benjamin L. Bachmann, Amy E. Lazicki, Natalie B. Kostinski, Brian R. Maddox, Gilbert W. Collins, Siegfried H. Glenzer, Roger W. Falcone. Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum[J]. Matter and Radiation at Extremes, 2020, 5(1): 018401.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!