首页 > 论文 > 光学学报 > 40卷 > 2期(pp:0201002--1)

大气中超高斯和高斯涡旋光束传输特性比较

Comparison of Propagation Characteristics Between Super Gaussian and Gaussian Vortex Beams in Air

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为比较两种不同类型涡旋光束在大气湍流中的传输特性,利用菲涅耳衍射积分公式,推导了涡旋光束在湍流大气中的传输表达式。采用随机相位屏法建立了涡旋光束在大气湍流中的传输模型,计算了不同参数下涡旋光束的强度分布以及光束质量。结果表明:传输距离、拓扑荷数和湍流强度都会对涡旋光束光束质量产生影响。其中,传输距离对超高斯涡旋光束的光束质量的影响更大,而拓扑荷数则对高斯涡旋光束的光束质量的影响更明显。

Abstract

To compare the propagation characteristics of super Gaussian vortex beam with Gaussian vortex beam in air, the transmission equation of these beams in a turbulent atmosphere are deduced by using the Fresnel diffraction integral formula. Using the random phase screen method, an atmospheric turbulence analysis model is established, and intensity distributions and beam quality are calculated for vortex beams with different parameters. Results indicate that beam quality is influenced by topological charge, transmission distance, and turbulence intensity. Among these factors, transmission distance has the most obvious effect on beam quality for a super Gaussian vortex beam, whereas topological charge has a more obvious effect on Gaussian vortex beam quality.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:P427.1; O436.1

DOI:10.3788/AOS202040.0201002

所属栏目:大气光学与海洋光学

基金项目:中央高校基本科研业务费专项资金;

收稿日期:2019-08-08

修改稿日期:2019-09-10

网络出版日期:2020-02-01

作者单位    点击查看

闫家伟:四川大学电子信息学院, 四川 成都 610065
雍康乐:四川大学电子信息学院, 四川 成都 610065
唐善发:四川大学电子信息学院, 四川 成都 610065
张蓉竹:四川大学电子信息学院, 四川 成都 610065

联系人作者:张蓉竹(zhang_rz@scu.edu.cn)

备注:中央高校基本科研业务费专项资金;

【1】Zhu K C, Zhou G Q, Li X G, et al. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere [J]. Optics Express. 2008, 16(26): 21315-21320.

【2】Gu Y L. Statistics of optical vortex wander on propagation through atmospheric turbulence [J]. Journal of the Optical Society of America A. 2013, 30(4): 708-716.

【3】Gbur G, Tyson R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation [J]. Journal of the Optical Society of America A. 2008, 25(1): 225-230.

【4】Lukin V P, Konyaev P A, Sennikov V A. Beam spreading of vortex beams propagating in turbulent atmosphere [J]. Applied Optics. 2012, 51(10): C84-C87.

【5】Ge X L, Wang B Y, Guo C S. Beam broadening of vortex beams propagating in turbulent atmosphere [J]. Acta Optica Sinica. 2016, 36(3): 0301002.
葛筱璐, 王本义, 国承山. 涡旋光束在湍流大气中的光束扩展 [J]. 光学学报. 2016, 36(3): 0301002.

【6】Ke X Z, Wang C Z. Intensity distribution of partially coherent off-axis vortex beam propagating in atmospheric turbulence [J]. Acta Optica Sinica. 2017, 37(1): 0101005.
柯熙政, 王超珍. 部分相干离轴涡旋光束在大气湍流中的光强分布 [J]. 光学学报. 2017, 37(1): 0101005.

【7】Zhong Y L, Cui Z F, Shi J P, et al. Propagation properties of partially coherent Laguerre-Gaussian beams in turbulent atmosphere [J]. Optics & Laser Technology. 2011, 43(4): 741-747.

【8】Xu H F, Zhang Z, Qu J, et al. Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov turbulence [J]. Optics Express. 2014, 22(19): 22479-22489.

【9】Xiao Q Y, Zhang R Z. Propagation characteristics of super-Gaussian beams with vortex wave-front [J]. High Power Laser and Particle Beams. 2014, 26(12): 121015.
肖谦裔, 张蓉竹. 超高斯涡旋光束在空间中的传输特性 [J]. 强激光与粒子束. 2014, 26(12): 121015.

【10】Fleck J A. Jr., Morris J R, Feit M D. Time-dependent propagation of high energy laser beams through the atmosphere [J]. Applied Physics. 1976, 10(2): 129-160.

【11】Frehlich R. Simulation of laser propagation in a turbulent atmosphere [J]. Applied Optics. 2000, 39(3): 393-397.

【12】Nie J Y, Xiao Q Y, Liu G D, et al. Propagation characteristics of ultra-short Gaussian vortex beams [J]. Optik. 2017, 141: 99-104.

引用该论文

Yan Jiawei,Yong Kangle,Tang Shanfa,Zhang Rongzhu. Comparison of Propagation Characteristics Between Super Gaussian and Gaussian Vortex Beams in Air[J]. Acta Optica Sinica, 2020, 40(2): 0201002

闫家伟,雍康乐,唐善发,张蓉竹. 大气中超高斯和高斯涡旋光束传输特性比较[J]. 光学学报, 2020, 40(2): 0201002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF