首页 > 论文 > 激光与光电子学进展 > 57卷 > 9期(pp:90001--1)

超短超强激光装置中消色差技术的研究与进展 (封面文章)

Research Progress of Achromatic Technology in Ultra-Short and Ultra-Intense Laser Facility (Cover Paper)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

由于超短超强激光装置中光谱带宽较宽,使用传统的空间滤波器透镜组扩束会导致装置色差的积累,严重影响终端焦斑的质量。介绍了国内外用于超短超强激光装置中消除色差影响的主要技术与研究进展,对比总结了几种主要方案的优缺点,并提出了一种可动态精确补偿装置色差的方案,经实验验证已应用于实际工程中。最后对色差补偿的发展方向进行了分析与展望。

Abstract

Due to the wide spectral bandwidth of ultra-short and ultra-intense laser facility, the use of traditional spatial filter lens groups to expand the beam will cause the accumulation of chromatic aberrations of the device, which will seriously affect the quality of the terminal focal spot. In this paper, the main technology and research progress of eliminating chromatic aberration in ultra-short and ultra-intense laser facilities are reviewed, and both the advantages and disadvantages of several main schemes are compared and summarized. On this basis, a scheme for dynamic and accurate compensation of the chromatic aberration of the facility is proposed, which has been verified and used in actual engineering. This paper also analyses and prospects the development direction of chromatic aberration compensation.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/LOP57.090001

所属栏目:综述

收稿日期:2019-08-29

修改稿日期:2019-09-24

网络出版日期:2020-05-01

作者单位    点击查看

康俊:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
崔自若:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
朱坪:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
高奇:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
郭爱林:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
朱海东:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
杨庆伟:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
孙美智:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
谢兴龙:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
朱健强:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800

联系人作者:康俊(kangjun@siom.ac.cn); 崔自若(ziruocui@siom.ac.cn);

【1】Zamfir N V. Nuclear physics with 10 PW laser beams at extreme light infrastructure-nuclear physics (ELI-NP) [J]. The European Physical Journal Special Topics. 2014, 223(6): 1221-1227.

【2】Chériaux G, Giambruno F, Freéneaux A, et al. Apollon-10P: , 2012, 1462: 78-83.

【3】Hernandez-Gomez C, Blake S P, Chekhlov O, et al. The Vulcan 10 PW project [J]. Journal of Physics: Conference Series. 2010, 244(3): 032006.

【4】Shaykin A A, Poteomkin A K, Sergeev A M, et al. Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals [J]. Laser Physics Letters. 2007, 4(6): 421-427.

【5】Bahk S W, Rousseau P, Planchon T A, et al. Generation and characterization of the highest laser intensities (10 22 W/cm 2) [J]. Optics Letters. 2004, 29(24): 2837-2839.

【6】Tabak M, Hammer J, Glinsky M E, et al. Ignition and high gain with ultrapowerful lasers [J]. Physics of Plasmas. 1994, 1(5): 1626-1634.

【7】Edwards M J. MacKinnon A J, Zweiback J, et al. Investigation of ultrafast laser-driven radiative blast waves [J]. Physical Review Letters. 2001, 87(8): 085004.

【8】Tajima T, Mourou G. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics: high energy front [J]. Reviews of Modern Physics. 2001, 5(3): 419-426.

【9】Zhu J Q, Xie X L, Yang Q W, et al. Introduction to SG-II 5 PW laser facility . [C]∥ 2016 Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, CA, USA. New York: IEEE. 2016, 1-2.

【10】Li W Q, Gan Z B, Yu L H, et al. 339 J high-energy Ti: sapphire chirped-pulse amplifier for 10 PW laser facility [J]. Optics Letters. 2018, 43(22): 5681-5684.

【11】Zeng X M, Zhou K N, Zuo Y L, et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification [J]. Optics Letters. 2017, 42(10): 2014-2017.

【12】Yanovsky V, Chvykov V, Kalinchenko G, et al. Ultra-high intensity-high contrast 300-TW laser at 0.1 Hz repetition rate [J]. Optics Express. 2008, 16(3): 2109-2114.

【13】Leng Y X. Shanghai superintense ultrafast laser facility [J]. Chinese Journal of Lasers. 2019, 46(1): 0100001.
冷雨欣. 上海超强超短激光实验装置 [J]. 中国激光. 2019, 46(1): 0100001.

【14】Cui Z R, Kang J, Guo A L, et al. Dynamic chromatic aberration pre-compensation scheme for ultrashort petawatt laser systems [J]. Optics Express. 2019, 27(12): 16812-16822.

【15】Simmons W, Guch S, Rainer F, et al. A high energy spatial filter for removal of small scale beam instabilities in high power solid state lasers [J]. IEEE Journal of Quantum Electronics. 1975, 11(9): 852-852.

【16】Hunt J T, Renard P A, Simmons W W. Improved performance of fusion lasers using the imaging properties of multiple spatial filters [J]. Applied Optics. 1977, 16(4): 779-782.

【17】Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF laser [J]. Fusion Science and Technology. 2016, 69(1): 25-145.

【18】Xia L. Research of laser-transmission technique of high-energy ultrashort pulse-laser systems [D]. Shanghai: China Academy of Engineering Physics. 2001, 1-30.
夏兰. 高功率超短脉冲激光系统中光束传输技术研究 [D]. 上海:中国工程物理研究院. 2001, 1-30.

【19】Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light[M]. Cambridge: , 1980, 257-260.

【20】Bromage J, Zuegel J D, Bahk S W. Offner radial group delay compensator for ultra-broadband laser beam transport [J]. Optics Letters. 2014, 39(4): 1081.

【21】Planchon T A, Ferré S, Hamoniaux G, et al. Experimental evidence of 25-fs laser pulse distortion in singlet beam expanders [J]. Optics Letters. 2004, 29(19): 2300-2302.

【22】Kempe M, Rudolph W. Femtosecond pulses in the focal region of lenses [J]. Physical Review A. 1993, 48(6): 4721-4729.

【23】Jeong T M, Ko D K, Lee J. Deformation of thefocal spot of an ultrashort high-power laser pulse due to chromatic aberration by a beam expander [J]. Journal of the Korean Physical Society. 2008, 52(6): 1767-1773.

【24】Zhu P, Xie X L, Jiao Z Y, et al. Influence of wave-front error on temporal signal-to-noise ratio in large aperture ultrashort pulse focusing system [J]. Acta Optica Sinica. 2014, 34(10): 1032001.
朱坪, 谢兴龙, 焦兆阳, 等. 大口径超短脉冲聚焦系统波前误差对时间信噪比的影响 [J]. 光学学报. 2014, 34(10): 1032001.

【25】Cui Z R, Kang J, Xie X L, et al. Compensation for chromatic aberration in femtosecond petawatt laser systems based on zoom image transfer [J]. Chinese Journal of Lasers. 2019, 46(9): 0905001.
崔自若, 康俊, 谢兴龙, 等. 基于变焦像传递的飞秒拍瓦激光系统色差补偿 [J]. 中国激光. 2019, 46(9): 0905001.

【26】Kempe M, Rudolph W. Impact of chromatic and spherical aberration on the focusing of ultrashort light pulses by lenses [J]. Optics Letters. 1993, 18(2): 137-139.

【27】Bor Z. Distortion of femtosecond laser pulses in lenses [J]. Optics Letters. 1989, 14(2): 119-121.

【28】Heuck H M, Neumayer P, Kühl T, et al. Chromatic aberration in petawatt-class lasers [J]. Applied Physics B. 2006, 84(3): 421-428.

【29】Bor Z. Distortion of femtosecond laser pulses in lenses and lens systems [J]. Journal of Modern Optics. 1988, 35(12): 1907-1918.

【30】Zhu P, Xie X L, Zhu J Q. Influence of chromatic aberration from spatial filters for 5 PW ultra-short pulses on temporal contrast [J]. Acta Optica Sinica. 2017, 37(9): 0914005.
朱坪, 谢兴龙, 朱健强. 5PW超短脉冲空间滤波器色差对时间信噪比的影响 [J]. 光学学报. 2017, 37(9): 0914005.

【31】Cui Z R, Xie X L, Kang J, et al. Measurement and compensation for the chromatic aberration of SG-II 5 PW laser system [J]. Proceedings of SPIE. 2018, 10964: 109644C.

【32】Malacara D, Malacara Z. Achromatic aberration corrections with only one glass [J]. Proceedings of SPIE. 1994, 2263: 81-87.

【33】Katyl R H. Compensating optical systems part 3: achromatic Fourier transformation [J]. Applied Optics. 1972, 11(5): 1255-1260.

【34】Fang Y C, Tsai C M. MacDonald J, et al. Eliminating chromatic aberration in Gauss-type lens design using a novel genetic algorithm [J]. Applied Optics. 2007, 46(13): 2401-2410.

【35】Gaul E, Toncian T, Martinez M, et al. Improved pulse contrast on the Texas petawatt laser [J]. Journal of Physics: Conference Series. 2016, 717: 012092.

【36】Gaul E, Martinez M, Dyer G, et al. Beam distortion effects upon focusing an ultrashort petawatt laser pulse to greater than 10 22 W/cm 2 [J]. Optics Letters. 2019, 44(11): 2764-2767.

【37】Pirozhkov A S, Fukuda Y, Nishiuchi M, et al. Approaching the diffraction-limited, bandwidth-limited Petawatt [J]. Optics Express. 2017, 25(17): 20486-20501.

【38】Kiriyama H, Pirozhkov A S, Nishiuchi M, et al. High-contrast high-intensity repetitive petawatt laser [J]. Optics Letters. 2018, 43(11): 2595-2598.

【39】Hello P, Man C N. Design of a low-loss off-axis beam expander [J]. Applied Optics. 1996, 35(15): 2534-2536.

【40】Gaul E W, Martinez M, Blakeney J, et al. Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd: glass amplifier [J]. Applied Optics. 2010, 49(9): 1676-1681.

【41】Bromage J, Bahk S W, Begishev I A, et al. Technology development for ultraintense all-OPCPA systems [J]. High Power Laser Science and Engineering. 2019, 7: e4.

【42】Wu F X, Xu Y, Yu L P, et al. Measurement and compensation schemes for the pulse front distortion of ultra-intensity ultra-short laser pulses [J]. Proceedings of SPIE. 2016, 10016: 1001610.

【43】Guo Z, Yu L H, Wang J Y, et al. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: sapphire chirped pulse amplification laser system [J]. Optics Express. 2018, 26(20): 26776-26786.

【44】Zhou K N, Huang X J, Zeng X M, et al. Improvement of focusing performance for a multi-petawatt OPCPA laser facility [J]. Laser Physics. 2018, 28(12): 125301-125307.

【45】Wang J Y, Guo Z, Yu L H, et al. Wavefront evolution and analysis of 10-petawatt laser system [J]. Chinese Journal of Lasers. 2019, 46(8): 0801006.
王建业, 郭震, 於亮红, 等. 10 PW级激光系统波前演变及分析 [J]. 中国激光. 2019, 46(8): 0801006.

【46】Stone T, George N. Hybrid diffractive-refractive lenses and achromats [J]. Applied Optics. 1988, 27(14): 2960-2971.

【47】Madjidi-Zolbanine H, Froehly C. Holographic correction of both chromatic and spherical aberrations of single glass lenses [J]. Applied Optics. 1979, 18(14): 2385-2893.

【48】Néauport J, Blanchot N, Rouyer C, et al. Chromatism compensation of the PETAL multi petawatt high-energy laser [J]. Applied Optics. 2007, 46(9): 1568-1574.

【49】Kessler T J, Huang H, Weiner D. Diffractive optics for compensation of axial chromatic aberration in high-energy short-pulse laser . [C]∥International Conference on Ultrahigh Intensity Lasers, September 25-29, 2006, Cassis, France. 2006, E14898-E14905.

【50】Xie X D, Zhu Q H, Zhou K N, et al. Design of diffractive optical elements for chromatic aberration correction in high-energy petawatt laser system [J]. Acta Optica Sinica. 2010, 30(1): 142-146.
谢旭东, 朱启华, 周凯南, 等. 用衍射器件校正高能拍瓦激光系统色差的设计研究 [J]. 光学学报. 2010, 30(1): 142-146.

【51】Petrov G M, Mcguffey C. Thomas A G R, et al. Proton acceleration from high-contrast short pulse lasers interacting with sub-micron thin foils [J]. Journal of Applied Physics. 2016, 119(5): 053302.

引用该论文

Kang Jun,Cui Ziruo,Zhu Ping,Gao qi,Guo Ailin,Zhu Haidong,Yang Qingwei,Sun Meizhi,Xie Xinglong,Zhu Jianqiang. Research Progress of Achromatic Technology in Ultra-Short and Ultra-Intense Laser Facility[J]. Laser & Optoelectronics Progress, 2020, 57(9): 090001

康俊,崔自若,朱坪,高奇,郭爱林,朱海东,杨庆伟,孙美智,谢兴龙,朱健强. 超短超强激光装置中消色差技术的研究与进展[J]. 激光与光电子学进展, 2020, 57(9): 090001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF