首页 > 论文 > 中国激光 > 47卷 > 4期(pp:412001--1)

基于指示单光子源和轨道角动量的密钥分配协议的波动分析

Fluctuation Analysis of Key Distribution Protocol Based on Heralded Single-Photon Source and Orbital Angular Momentum

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对基于指示单光子源的测量设备无关量子密钥分配协议存在基的依赖性问题和信源统计波动问题,研究了基于服从泊松分布的指示单光子源和轨道角动量的量子密钥分配协议,并进行了统计波动分析。分析了对称信道和非对称信道下,该协议的单边传输效率、密钥生成速率与安全传输距离的关系,模拟了信源的统计波动对该协议密钥生成速率和传输距离的影响。仿真结果表明,应用轨道角动量编码解决了该协议基的依赖性问题,提高了密钥生成速率和安全传输距离。统计波动对该协议密钥生成速率的影响随着传输距离的增大而扩大,在脉冲数量相同时,非对称信道下的密钥生成速率、安全传输距离大于对称信道下的。

Abstract

Basis dependence and statistical fluctuation of light sources are problems for the measurement-device-independent quantum key distribution protocol based on heralded single-photon source (HSPS). To solve these problems, in this work, the quantum key distribution protocol based on HSPS in Poisson distribution and orbital angular momentum (OAM) was studied. Moreover, its statistical fluctuation was analyzed. The relationship among the transmission efficiency, key generation rate, and safe transmission distance of the protocol under symmetric and asymmetric channels was examined. Furthermore, the effect of statistical fluctuation on the key generation rate and transmission distance was simulated. Simulation results show that the problem of basis dependence is solved by OAM coding, and the key generation rate and transmission distance of the protocol are improved. The effect of statistical fluctuation on the key generation rate of the protocol increases with the transmission distance. For the same number of pulses, the key generation rate and safe transmission distance under the asymmetric channel are greater than those under the symmetric channel.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN918

DOI:10.3788/CJL202047.0412001

所属栏目:量子光学

基金项目:国家自然科学基金;

收稿日期:2019-10-24

修改稿日期:2019-12-16

网络出版日期:2020-04-01

作者单位    点击查看

何业锋:西安邮电大学网络空间安全学院, 陕西 西安 710121西安邮电大学无线网络安全技术国家工程实验室, 陕西 西安 710121
郭佳瑞:西安邮电大学网络空间安全学院, 陕西 西安 710121
李春雨:西安邮电大学通信与信息工程学院, 陕西 西安 710121
赵艳坤:西安邮电大学通信与信息工程学院, 陕西 西安 710121

联系人作者:郭佳瑞(1271745041@qq.com)

备注:国家自然科学基金;

【1】Bennett C H, Brassard G. An update on quantum cryptography [M]. ∥Blakley G R, Chaum D. Advances in cryptology. Lecture notes in computer science. Berlin, Heidelberg: Springer. 1985, 196: 475-480.

【2】Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol [J]. Physical Review Letters. 2000, 85(2): 441-444.

【3】Mayers D. Unconditional security in quantum cryptography [J]. Journal of the ACM. 2001, 48(3): 351-406.

【4】Gottesman D, Lo H K, Lutkenhaus N, et al. Security of quantum key distribution with imperfect devices [J]. Quantum Information and Computation. 2004, 4(5): 325-360.

【5】Makarov V. Controlling passively quenched single photon detectors by bright light [J]. New Journal of Physics. 2009, 11(6): 065003.

【6】Zhao Y. Fung C H F, Qi B, et al. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems [J]. Physical Review A. 2008, 78(4): 042333.

【7】Makarov V, Skaar J. Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols [J]. Quantum Information and Computation. 2007, 8(6): 622-635.

【8】Lydersen L, Skaar J, Makarov V. Tailored bright illumination attack on distributed-phase-reference protocols [J]. Journal of Modern Optics. 2011, 58(8): 680-685.

【9】Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution [J]. Physical Review Letters. 2012, 108(13): 130503.

【10】Sun Y, Zhao S H, Dong C. Measurement device independent quantum key distribution network based on quantum memory and entangled photon sources [J]. Acta Optica Sinica. 2016, 36(3): 0327001.
孙颖, 赵尚弘, 东晨. 基于量子存储和纠缠光源的测量设备无关量子密钥分配网络 [J]. 光学学报. 2016, 36(3): 0327001.

【11】Dong C, Zhao S H, Zhao W H, et al. Analysis of measurement device independent quantum key distribution with an asymmetric channel transmittance efficiency [J]. Acta Physica Sinica. 2014, 63(3): 030302.
东晨, 赵尚弘, 赵卫虎, 等. 非对称信道传输效率的测量设备无关量子密钥分配研究 [J]. 物理学报. 2014, 63(3): 030302.

【12】Kang D N, He Y F. Quantum key distribution protocols based on asymmetric channels of odd coherent sources [J]. Acta Optica Sinica. 2017, 37(6): 0627001.
康丹娜, 何业锋. 基于奇相干光源非对称信道的量子密钥分配协议 [J]. 光学学报. 2017, 37(6): 0627001.

【13】Zhang Y C, Yu S, Gu W Y. Squeezed-state measurement-device-independent quantum key distribution [J]. Scientific Reports. 2018, 8(1): 4115.

【14】Fasel S, Alibart O, Tanzili S, et al. High quality asynchronous heralded single photon source at telecom wavelength [J]. New Journal of Physics. 2004, 6(1): 628-629.

【15】Zhu F, Wang Q. Quantum key distribution protocol based on heralded single photon source [J]. Acta Optica Sinica. 2014, 34(6): 0627002.
朱峰, 王琴. 基于指示单光子源的量子密钥分配协议 [J]. 光学学报. 2014, 34(6): 0627002.

【16】Zhou Y Y, Zhou X J, Su B B. A measurement-device-independent quantum key distribution protocol with a heralded single photon source [J]. Optoelectronics Letters. 2016, 12(2): 148-151.

【17】He Y F, Wang D, Yang H J, et al. Quantum key distribution based on heralded single photon sources and quantum memory [J]. Chinese Journal of Lasers. 2019, 46(4): 0412001.
何业锋, 王登, 杨红娟, 等. 基于指示单光子源和量子存储的量子密钥分配 [J]. 中国激光. 2019, 46(4): 0412001.

【18】Tamaki K, Lo H K. Fung C H F, et al. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw [J]. Physical Review A. 2012, 85(4): 042307.

【19】Zhao S M, Gong L Y, Li Y Q, et al. A large-alphabet quantum key distribution protocol using orbital angular momentum entanglement [J]. Chinese Physics Letters. 2013, 30(6): 060305.

【20】Qiao W, Gao S C, Lei T, et al. Transmission of orbital angular momentum modes in grapefruit-type microstructure fiber [J]. Chinese Journal of Lasers. 2017, 44(4): 0406002.
乔文, 高社成, 雷霆, 等. 轨道角动量模式在柚子型微结构光纤中的传输 [J]. 中国激光. 2017, 44(4): 0406002.

【21】Su Z K, Wang F Q, Lu Y Q, et al. Study on quantum cryptography using orbital angular momentum states of photons [J]. Acta Physica Sinica. 2008, 57(5): 3016-3021.
苏志锟, 王发强, 路轶群, 等. 基于光子轨道角动量的密码通信方案研究 [J]. 物理学报. 2008, 57(5): 3016-3021.

【22】Yan L, Sun H, Zhao S M. Study on decoyed measurement device independent quantum key distribution protocol using orbital angular momentum [J]. Journal of Signal Processing. 2014, 30(11): 1275-1278.
颜龙, 孙豪, 赵生妹. 应用诱骗态的光子轨道角动量测量设备无关量子密钥分发协议的研究 [J]. 信号处理. 2014, 30(11): 1275-1278.

【23】He Y F, Li D Q, Song C, et al. Quantum key distribution protocol based on odd coherent sources and orbital angular momentum [J]. Chinese Journal of Lasers. 2018, 45(7): 0712001.
何业锋, 李东琪, 宋畅, 等. 基于奇相干光源和轨道角动量的量子密钥分配协议 [J]. 中国激光. 2018, 45(7): 0712001.

【24】He Y F, Yang H J, Wang D, et al. Quantum key distribution based on heralded pair coherent state and orbital angular momentum [J]. Acta Optica Sinica. 2019, 39(4): 0427001.
何业锋, 杨红娟, 王登, 等. 基于标记配对相干态和轨道角动量的量子密钥分配 [J]. 光学学报. 2019, 39(4): 0427001.

【25】Zhu Z D, Zhao S H, Gu W Y, et al. Orbital-angular-momentum-encoded measurement-device-independent quantum key distributions under atmospheric turbulence [J]. Acta Optica Sinica. 2018, 38(12): 1227002.
朱卓丹, 赵尚弘, 谷文苑, 等. 大气湍流下的轨道角动量编码测量设备无关量子密钥分发 [J]. 光学学报. 2018, 38(12): 1227002.

【26】Shen Z G, Wang L, Mao Q P, et al. Round-robin differential phase shift quantum key distribution protocol based on orbital angular momentum [J]. Acta Optica Sinica. 2019, 39(2): 0227001.
沈志冈, 王乐, 毛钱萍, 等. 基于轨道角动量的循环差分相移量子密钥分发 [J]. 光学学报. 2019, 39(2): 0227001.

【27】Ma X F. Fung C H F, Razavi M. Statistical fluctuation analysis for measurement-device-independent quantum key distribution [J]. Physical Review A. 2012, 86(5): 052305.

【28】Sun S H, Gao M, Li C Y, et al. Practical decoy-state measurement-device-independent quantum key distribution [J]. Physical Review A. 2013, 87(5): 052329.

【29】Zhou X Y, Zhang C H, Guo G C, et al. The statistical fluctuation analysis for the measurement-device-independent quantum key distribution with heralded single-photon sources [J]. Quantum Information Processing. 2016, 15(6): 2455-2464.

【30】Zhu Z D, Zhang X, Zhao S H, et al. Measurement-device-independent quantum key distribution protocols for heralded pair coherent state [J]. Laser & Optoelectronics Progress. 2017, 54(12): 122703.
朱卓丹, 张茜, 赵尚弘, 等. 预报相干光子对的测量设备无关量子密钥分发协议 [J]. 激光与光电子学进展. 2017, 54(12): 122703.

【31】Curtis J E, Grier D G. Modulated optical vortices [J]. Optics Letters. 2003, 28(11): 872-874.

【32】Lü H, Ke X Z. Research on the beam with orbital angular momentum used in encoding and decoding of optical communication [J]. Acta Optica Sinica. 2009, 29(2): 331-335.
吕宏, 柯熙政. 具轨道角动量光束用于光通信编码及解码研究 [J]. 光学学报. 2009, 29(2): 331-335.

【33】Wang Q, Wang X B. Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources [J]. Physical Reviews A. 2013, 88(5): 052332.

引用该论文

He Yefeng,Guo Jiarui,Li Chunyu,Zhao Yankun. Fluctuation Analysis of Key Distribution Protocol Based on Heralded Single-Photon Source and Orbital Angular Momentum[J]. Chinese Journal of Lasers, 2020, 47(4): 0412001

何业锋,郭佳瑞,李春雨,赵艳坤. 基于指示单光子源和轨道角动量的密钥分配协议的波动分析[J]. 中国激光, 2020, 47(4): 0412001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF