首页 > 论文 > Advanced Photonics > 2卷 > 6期(pp:66004-66004)

Metalens-integrated compact imaging devices for wide-field microscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Metasurfaces have demonstrated unprecedented capabilities in manipulating light with ultrathin and flat architectures. Although great progress has been made in the metasurface designs and function demonstrations, most metalenses still only work as a substitution of conventional lenses in optical settings, whose integration advantage is rarely manifested. We propose a highly integrated imaging device with silicon metalenses directly mounted on a complementary metal oxide semiconductor image sensor, whose working distance is in hundreds of micrometers. The imaging performances including resolution, signal-to-noise ratio, and field of view (FOV) are investigated. Moreover, we develop a metalens array with polarization-multiplexed dual-phase design for a wide-field microscopic imaging. This approach remarkably expands the FOV without reducing the resolution, which promises a non-limited space-bandwidth product imaging for wide-field microscopy. As a result, we demonstrate a centimeter-scale prototype for microscopic imaging, showing uniqueness of meta-design for compact integration.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1117/1.AP.2.6.066004

所属栏目:Research Articles

基金项目:National Key R&D Program of China; National Natural Science Foundation of China;

收稿日期:2020-07-31

修改稿日期:2020-10-19

网络出版日期:2020-11-13

作者单位    点击查看

Beibei Xu:Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing, China;Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
Hanmeng Li:Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing, China;Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
Shenglun Gao:Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing, China;Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
Xia Hua:Nanjing University, School of Electronic Science and Engineering, Nanjing, China
Cheng Yang:Nanjing University, School of Electronic Science and Engineering, Nanjing, China
Chen Chen:Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing, China;Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
Feng Yan:Nanjing University, School of Electronic Science and Engineering, Nanjing, China
Shining Zhu:Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing, China;Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
Tao Li:Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing, China;Collaborative Innovation Center of Advanced Microstructures, Nanjing, China

联系人作者:Tao Li(taoli@nju.edu.cn)

备注:National Key R&D Program of China; National Natural Science Foundation of China;

【1】A. Ozcan and E. McLeod. Lensless imaging and sensing. Annu. Rev. Biomed. Eng. 18(1), 77-102(2016).A. Ozcan and E. McLeod. Lensless imaging and sensing. Annu. Rev. Biomed. Eng. 18(1), 77-102(2016).

【2】N. AntipaN. Antipa et al.Diffusercam: lensless single-exposure 3D imaging. Optica. 5(1), 1-9(2018).N. AntipaN. Antipa et al.Diffusercam: lensless single-exposure 3D imaging. Optica. 5(1), 1-9(2018).

【3】J. ZhangJ. Zhang et al.Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy. Sci. Rep. 7(1), (2017).J. ZhangJ. Zhang et al.Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy. Sci. Rep. 7(1), (2017).

【4】A. BerdeuA. Berdeu et al.Comparative study of fully three-dimensional reconstruction algorithms for lens-free microscopy. Appl. Opt. 56(13), 3939-3951(2017).A. BerdeuA. Berdeu et al.Comparative study of fully three-dimensional reconstruction algorithms for lens-free microscopy. Appl. Opt. 56(13), 3939-3951(2017).

【5】G. Satat, M. Tancik and R. Raskar. Lensless imaging with compressive ultrafast sensing. IEEE Trans. Comput. Imaging. 3(3), 398-407(2017).G. Satat, M. Tancik and R. Raskar. Lensless imaging with compressive ultrafast sensing. IEEE Trans. Comput. Imaging. 3(3), 398-407(2017).

【6】T. NakamuraT. Nakamura et al.Super field-of-view lensless camera by coded image sensors. Sensors. 19(6), (2019).T. NakamuraT. Nakamura et al.Super field-of-view lensless camera by coded image sensors. Sensors. 19(6), (2019).

【7】T. AidukasT. Aidukas et al.Low-cost, sub-micron resolution, wide-field computational microscopy using opensource hardware. Sci. Rep. 9(1), (2019).T. AidukasT. Aidukas et al.Low-cost, sub-micron resolution, wide-field computational microscopy using opensource hardware. Sci. Rep. 9(1), (2019).

【8】S. JiangS. Jiang et al.Wide-field, high-resolution lensless on-chip microscopy via near-field blind ptychographic modulation. Lab Chip. 20(6), 1058-1065(2020).S. JiangS. Jiang et al.Wide-field, high-resolution lensless on-chip microscopy via near-field blind ptychographic modulation. Lab Chip. 20(6), 1058-1065(2020).

【9】N. YuN. Yu et al.Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 334(6054), 333-337(2011).N. YuN. Yu et al.Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 334(6054), 333-337(2011).

【10】D. LinD. Lin et al.Dielectric gradient metasurface optical elements. Science. 345(6194), 298-302(2014).D. LinD. Lin et al.Dielectric gradient metasurface optical elements. Science. 345(6194), 298-302(2014).

【11】N. Yu and F. Capasso. Flat optics with designer metasurfaces. Nat. Mater. 13(2), 139-150(2014).N. Yu and F. Capasso. Flat optics with designer metasurfaces. Nat. Mater. 13(2), 139-150(2014).

【12】A. ArbabiA. Arbabi et al.Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10(11), 937-943(2015).A. ArbabiA. Arbabi et al.Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10(11), 937-943(2015).

【13】M. Faraji-DanaM. Faraji-Dana et al.Compact folded metasurface spectrometer. Nat. Commun. 9(1), (2018).M. Faraji-DanaM. Faraji-Dana et al.Compact folded metasurface spectrometer. Nat. Commun. 9(1), (2018).

【14】E. NazemosadatE. Nazemosadat et al.Dielectric broadband metasurfaces for fiber mode-multiplexed communications. Adv. Opt. Mater. 7(14), (2019).E. NazemosadatE. Nazemosadat et al.Dielectric broadband metasurfaces for fiber mode-multiplexed communications. Adv. Opt. Mater. 7(14), (2019).

【15】F. YesilkoyF. Yesilkoy et al.Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics. 13(6), 390-396(2019).F. YesilkoyF. Yesilkoy et al.Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics. 13(6), 390-396(2019).

【16】F. BalliF. Balli et al.A hybrid achromatic metalens. Nat. Commun. 11(1), (2020).F. BalliF. Balli et al.A hybrid achromatic metalens. Nat. Commun. 11(1), (2020).

【17】S. ByrnesS. Byrnes et al.Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt. Express. 24(5), 5110-5124(2018).S. ByrnesS. Byrnes et al.Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt. Express. 24(5), 5110-5124(2018).

【18】T. PhanT. Phan et al.High-efficiency, large-area, topology-optimized metasurfaces. Light Sci. Appl. 8(1), (2019).T. PhanT. Phan et al.High-efficiency, large-area, topology-optimized metasurfaces. Light Sci. Appl. 8(1), (2019).

【19】W. T. ChenW. T. Chen et al.A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13(3), 220-226(2018).W. T. ChenW. T. Chen et al.A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13(3), 220-226(2018).

【20】S. WangS. Wang et al.A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13(3), 227-232(2018).S. WangS. Wang et al.A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13(3), 227-232(2018).

【21】S. ShresthaS. Shrestha et al.Broadband achromatic dielectric metalenses. Light Sci. Appl. 7(1), (2018).S. ShresthaS. Shrestha et al.Broadband achromatic dielectric metalenses. Light Sci. Appl. 7(1), (2018).

【22】B. Groever, W. T. Chen and F. Capasso. Meta-lens doublet in the visible region. Nano Lett. 17(8), 4902-4907(2017).B. Groever, W. T. Chen and F. Capasso. Meta-lens doublet in the visible region. Nano Lett. 17(8), 4902-4907(2017).

【23】Y. GuoY. Guo et al.High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Adv. Opt. Mater. 6(19), (2018).Y. GuoY. Guo et al.High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Adv. Opt. Mater. 6(19), (2018).

【24】J. P. B. MuellerJ. P. B. Mueller et al.Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118(11), (2017).J. P. B. MuellerJ. P. B. Mueller et al.Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118(11), (2017).

【25】N. A. RubinN. A. Rubin et al.Matrix Fourier optics enables a compact full-Stokes polarization camera. Science. 365(6448), (2019).N. A. RubinN. A. Rubin et al.Matrix Fourier optics enables a compact full-Stokes polarization camera. Science. 365(6448), (2019).

【26】A. ArbabiA. Arbabi et al.Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7(1), (2016).A. ArbabiA. Arbabi et al.Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7(1), (2016).

【27】Y. ZhouY. Zhou et al.Flat optics for image differentiation. Nat. Photonics. 14(5), 316-323(2020).Y. ZhouY. Zhou et al.Flat optics for image differentiation. Nat. Photonics. 14(5), 316-323(2020).

【28】M. KhorasaninejadM. Khorasaninejad et al.Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 352(6290), 1190-1194(2016).M. KhorasaninejadM. Khorasaninejad et al.Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 352(6290), 1190-1194(2016).

【29】Z.-B. FanZ.-B. Fan et al.Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys. Rev. Appl. 10(1), (2018).Z.-B. FanZ.-B. Fan et al.Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys. Rev. Appl. 10(1), (2018).

【30】R. LinR. Lin et al.Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14(3), 227-231(2019).R. LinR. Lin et al.Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14(3), 227-231(2019).

【31】C. ChenC. Chen et al.Spectral tomographic imaging with aplanatic metalens. Light Sci. Appl. 8(1), (2019).C. ChenC. Chen et al.Spectral tomographic imaging with aplanatic metalens. Light Sci. Appl. 8(1), (2019).

【32】G. JinG. Jin et al.Lens-free shadow image based high-throughput continuous cell monitoring technique. Biosens. Bioelectron. 38(1), 126-131(2012).G. JinG. Jin et al.Lens-free shadow image based high-throughput continuous cell monitoring technique. Biosens. Bioelectron. 38(1), 126-131(2012).

【33】L. HuangL. Huang et al.Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12(11), 5750-5755(2012).L. HuangL. Huang et al.Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12(11), 5750-5755(2012).

【34】G. ZhengG. Zheng et al.Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10(4), 308-312(2015).G. ZhengG. Zheng et al.Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10(4), 308-312(2015).

【35】J. EngelbergJ. Engelberg et al.Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics. 9(2), 361-370(2020).J. EngelbergJ. Engelberg et al.Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics. 9(2), 361-370(2020).

【36】J. M. MoghimiJ. M. Moghimi et al.Micro-Fresnel-zone-plate array on flexible substrate for large field-of-view and focus scanning. Sci. Rep. 5(1), (2016).J. M. MoghimiJ. M. Moghimi et al.Micro-Fresnel-zone-plate array on flexible substrate for large field-of-view and focus scanning. Sci. Rep. 5(1), (2016).

【37】R. NgR. Ng et al.Light field photography with a hand-held plenoptic camera. (2005).

【38】R. PrevedelR. Prevedel et al.Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods. 11(7), 727-730(2014).R. PrevedelR. Prevedel et al.Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods. 11(7), 727-730(2014).

【39】S. BoroviksS. Boroviks et al.Multifunctional metamirror: polarization splitting and focusing. ACS Photonics. 5(5), 1648-1653(2017).S. BoroviksS. Boroviks et al.Multifunctional metamirror: polarization splitting and focusing. ACS Photonics. 5(5), 1648-1653(2017).

【40】L. JinL. Jin et al.Noninterleaved metasurface for (26?1) spin- and wavelength-encoded holograms. Nano Lett. 18(12), 8016-8024(2018).L. JinL. Jin et al.Noninterleaved metasurface for (26?1) spin- and wavelength-encoded holograms. Nano Lett. 18(12), 8016-8024(2018).

【41】N. A. RubinN. A. Rubin et al.Polarization state generation and measurement with a single metasurface. Opt. Express. 26(17), 21455-21478(2018).N. A. RubinN. A. Rubin et al.Polarization state generation and measurement with a single metasurface. Opt. Express. 26(17), 21455-21478(2018).

【42】B. GroeverB. Groever et al.High-efficiency chiral meta-lens. Sci. Rep. 8(1), (2018).B. GroeverB. Groever et al.High-efficiency chiral meta-lens. Sci. Rep. 8(1), (2018).

【43】A. C. OvervigA. C. Overvig et al.Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci. Appl. 8(1), (2019).A. C. OvervigA. C. Overvig et al.Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci. Appl. 8(1), (2019).

【44】P. HuoP. Huo et al.Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett. 20(4), 2791-2798(2020).P. HuoP. Huo et al.Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett. 20(4), 2791-2798(2020).

【45】R. Y. TsaiR. Y. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses. IEEE J. Rob. Autom. 3(4), 323-344(1987).R. Y. TsaiR. Y. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses. IEEE J. Rob. Autom. 3(4), 323-344(1987).

引用该论文

Beibei Xu,Hanmeng Li,Shenglun Gao,Xia Hua,Cheng Yang,Chen Chen,Feng Yan,Shining Zhu,Tao Li. Metalens-integrated compact imaging devices for wide-field microscopy[J]. Advanced Photonics, 2020, 2(6): 066004

Beibei Xu,Hanmeng Li,Shenglun Gao,Xia Hua,Cheng Yang,Chen Chen,Feng Yan,Shining Zhu,Tao Li. Metalens-integrated compact imaging devices for wide-field microscopy[J]. Advanced Photonics, 2020, 2(6): 066004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF