首页 > 论文 > 光学学报 > 40卷 > 12期(pp:1219001--1)

量子相干调控金刚石锡空位色心光学双稳研究

Controlling Optical Bistability Through Quantum Coherence in Tin-Vacancy Color Centers in Diamond

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于电磁感应透明原理理论研究了金刚石锡空位色心系统的光学双稳特性。研究表明,通过改变系统的参数,即探测场失谐量、耦合场失谐量和强度、合作参数等,可以显著改变系统的量子相干特性,从而可以有效调控该固态系统的光学双稳的阈值。另外,适当地调节耦合激光场的强度,可以实现光学双稳态和多稳态的相互转化。

Abstract

In this work, based on the theory of electromagnetically induced transparency, optical bistability behavior in a diamond tin-vacancy color center system was theoretically investigated. It was found that a change in system parameters, such as the detuning of probe and coupled fields, intensities of the coupled fields, and cooperation parameters, can significantly change the quantum coherence characteristics of the system. This can be used to control the threshold of optical bistability of a solid system. In addition, the mutual transformation of optical bistability and optical multistability can be realized by properly adjusting the intensity of the coupled fields.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O431.2

DOI:10.3788/AOS202040.1219001

所属栏目:非线性光学

基金项目:国家自然科学基金;

收稿日期:2020-01-13

修改稿日期:2020-03-23

网络出版日期:2020-06-01

作者单位    点击查看

章建帅:陕西师范大学物理学与信息技术学院, 陕西 西安 710119
张红军:陕西师范大学物理学与信息技术学院, 陕西 西安 710119
孙辉:陕西师范大学物理学与信息技术学院, 陕西 西安 710119

联系人作者:张红军(zhhjun@snnu.edu.cn)

备注:国家自然科学基金;

【1】Arimondo E V. Coherent population trapping in laser spectroscopy [J]. Progress in Optics. 1996, 35: 257-354.

【2】Harris S E. Electromagnetically induced transparency [J]. Physics Today. 1997, 50(7): 36-42.

【3】Dawes A M C, Illing L, Clark S M, et al. All-optical switching in rubidium vapor [J]. Science. 2005, 308(5722): 672-674.

【4】Gibbs H M. McCall S L, Venkatesan T N C. Differential gain and bistability using a sodium-filledfabry-perot interferometer [J]. Physical Review Letters. 1976, 36(19): 1135-1138.

【5】Orozco L A, Kimble H J, Rosenberger A T, et al. Single-mode instability in optical bistability [J]. Physical Review A. 1989, 39(3): 1235-1252.

【6】Rosenberger A T, Orozco L A, Kimble H J. Observation of absorptive bistability with two-level atoms in a ring cavity [J]. Physical Review A. 1983, 28(4): 2569-2572.

【7】Harshawardhan W, Agarwal G S. Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences [J]. Physical Review A. 1996, 53(3): 1812-1817.

【8】Joshi A, Xiao M. Optical multistability in three-level atoms inside an optical ring cavity [J]. Physical Review Letters. 2003, 91(14): 143904.

【9】Cheng D C, Liu C P, Gong S Q. Optical bistability and multistability via the effect of spontaneously generated coherence in a three-level ladder-type atomic system [J]. Physics Letters A. 2004, 332(3/4): 244-249.

【10】Guo H J, Wang L C, Niu Y P, et al. Optical bistability and multistability via multi-Raman-channel interference [J]. Chinese Optics Letters. 2009, 7(8): 659-662.

【11】Wang Z P. Controlling optical bistability and multistability in a three-level ∧-type atomic system under the nonresonant condition [J]. Acta Sinica Quantum Optica. 2009, 15(2): 133-138.
王志平. 非共振条件下∧型三能级原子系统光学双稳态和多稳态的控制 [J]. 量子光学学报. 2009, 15(2): 133-138.

【12】Li J H, Lü X Y, Luo J M, et al. Optical bistability and multistability via atomic coherence inan N-type atomic medium [J]. Physical Review A. 2006, 74(3): 035801.

【13】Li J H. Controllable optical bistability in a four-subband semiconductor quantum well system [J]. Physical Review B. 2007, 75(15): 155329.

【14】Li J B, Liang S, He M D, et al. A tunablebistable device based on a coupled quantum dot: metallic nanoparticle nanosystem [J]. Applied Physics B. 2015, 120(1): 161-166.

【15】Bao C J, Qi Y H, Niu Y P, et al. Surface plasmon-assisted optical bistability in the quantum dot-metal nanoparticle hybrid system [J]. Journal of Modern Optics. 2016, 63(13): 1280-1285.

【16】Fuchs G D, Falk A L, Dobrovitski V V, et al. Spin coherence during optical excitation of a single nitrogen-vacancy center in diamond [J]. Physical Review Letters. 2012, 108(15): 157602.

【17】Santori C, Tamarat P, Neumann P, et al. Coherent population trapping of single spins in diamond under optical excitation [J]. Physical Review Letters. 2006, 97(24): 247401.

【18】Feng S, Wang T A, Zhang Y. Converting W-state into GHz-state based on cross-Kerr nonlinearity and coupling systems of nitrogen-vacancy color center in diamond and microtoroidal resonator [J]. Laser & Optoelectronics Progress. 2019, 56(21): 212701.
冯帅, 王泰安, 张勇. 基于交叉克尔非线性和金刚石氮空穴色心-微环谐振腔的W态向GHz态的转换 [J]. 激光与光电子学进展. 2019, 56(21): 212701.

【19】Liao Q H, Jin P, Ye Y. Entanglement dynamic properties of nitrogen-vacancy centers coupled to mechanical resonators in nanodiamond [J]. Chinese Journal of Lasers. 2018, 45(12): 1212001.
廖庆洪, 金鹏, 叶杨. 纳米金刚石氮空位中心耦合机械振子的纠缠动力学特性 [J]. 中国激光. 2018, 45(12): 1212001.

【20】Zhang D, Yu R, Li J H, et al. Laser-polarization-dependent and magnetically controlled optical bistability in diamond nitrogen-vacancy centers [J]. Physics Letters A. 2013, 377(38): 2621-2627.

【21】Neu E, Agio M, Becher C. Photophysics of single silicon vacancy centers in diamond: implications for single photon emission [J]. Optics Express. 2012, 20(18): 19956-19971.

【22】Sipahigil A, Evans R E, Sukachev D D, et al. An integrated diamond nanophotonics platform forquantum-optical networks [J]. Science. 2016, 354(6314): 847-850.

【23】Hepp C, Müller T, Waselowski V, et al. Electronic structure of the silicon vacancy color center in diamond [J]. Physical Review Letters. 2014, 112(3): 036405.

【24】Iwasaki T, Ishibashi F, Miyamoto Y, et al. Germanium-vacancy single color centers in diamond [J]. Scientific Reports. 2015, 5: 12882.

【25】Palyanov Y N, Kupriyanov I N, Borzdov Y M, et al. Germanium: a new catalyst for diamond synthesis and a new optically active impurity in diamond [J]. Scientific Reports. 2015, 5: 14789.

【26】Ekimov E A, Lyapin S G, Boldyrev K N, et al. Germanium-vacancy color center in isotopically enriched diamonds synthesized at high pressures [J]. JETP Letters. 2015, 102(11): 701-706.

【27】Siyushev P, Metsch M H, Ijaz A, et al. Optical and microwave control of germanium-vacancy center spins in diamond [J]. Physical Review B. 2017, 96(8): 081201.

【28】Bhaskar M, Sukachev D, Sipahigil A, et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide [J]. Physical Review Letters. 2017, 118(22): 223603.

【29】Boldyrev K N, Mavrin B N, Sherin P S, et al. Bright luminescence of diamonds with Ge-V centers [J]. Journal of Luminescence. 2018, 193: 119-124.

【30】Bray K, Regan B, Trycz A, et al. Single crystal diamond membranes and photonic resonators containing germanium vacancy color centers [J]. ACS Photonics. 2018, 5(12): 4817-4822.

【31】Iwasaki T, Miyamoto Y, Taniguchi T, et al. Tin-vacancy quantum emitters in diamond [J]. Physical Review Letters. 2017, 119(25): 253601.

【32】Thiering G, Gali A. Ab initio magneto-optical spectrum of group-IV vacancy color centers in diamond [J]. Physical Review X. 2018, 8(2): 021063.

【33】Meystre P. On the use of the mean-field theory in optical bistability [J]. Optics Communications. 1978, 26(2): 277-280.

引用该论文

Zhang Jianshuai,Zhang Hongjun,Sun Hui. Controlling Optical Bistability Through Quantum Coherence in Tin-Vacancy Color Centers in Diamond[J]. Acta Optica Sinica, 2020, 40(12): 1219001

章建帅,张红军,孙辉. 量子相干调控金刚石锡空位色心光学双稳研究[J]. 光学学报, 2020, 40(12): 1219001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF