首页 > 论文 > 中国激光 > 46卷 > 8期(pp:801009--1)

基于共轭微腔和磁微腔耦合共振的多偏振态激光输出

Multiple-Polarization Laser Based on Coupling of Conjugated and Magnetic Microcavities

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了获得圆偏振和激光输出一体化的结构,利用增益和损耗微腔、磁性微腔和金属层组成一个复合结构体系,并借助4×4传输矩阵研究该结构的传输特性。结果发现,该结构在一定结构参数范围内产生了较强的法拉第旋转效应,并获得了增益传输模式,实现了多种椭圆偏振或圆偏振激光的同时输出。此外,在某些特定结构参数和特定波长条件下,该结构会产生超强的圆偏振激光。

Abstract

Herein, to obtain an integrated structure of circular polarization and laser output, we design a compound structure composed of gain and loss microcavities, magnetic microcavity, and metal layers. We use a 4×4 transfer matrix to study the optical properties of the structure. Results show that the compound structure can result in an intense Faraday rotation effect and gain transmission mode, and form multiple laser outputs with elliptical or circular polarizations in a certain range of structural parameters. In addition, for some specific structural parameters and wavelengths, the structure can produce an ultra-intense laser with circular polarization.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0801009

所属栏目:激光器件与激光物理

基金项目:安徽省教育厅重点科学研究项目;

收稿日期:2019-03-20

修改稿日期:2019-04-19

网络出版日期:2019-08-01

作者单位    点击查看

吴义恒:安庆师范大学物理和电气工程学院, 安徽 安庆 246133
李小雪:江苏大学计算机科学与通信工程学院, 江苏 镇江 212013
方云团:江苏大学计算机科学与通信工程学院, 江苏 镇江 212013

联系人作者:方云团(fang_yt1965@sina.com)

备注:安徽省教育厅重点科学研究项目;

【1】Bhattacharya A, Baten M Z, Iorsh I et al. Room-temperature spin polariton diode laser. Physical Review Letters. 119(6), (2017).

【2】Saha D, Basu D and Bhattacharya P. High-frequency dynamics of spin-polarized carriers and photons in a laser. Physical Review B. 82(20), (2010).

【3】Yu N F, Wang Q J, Pflügl C et al. Semiconductor lasers with integrated plasmonic polarizers. Applied Physics Letters. 94(15), (2009).

【4】Martín M D, Aichmayr G, Vi?a L et al. Polarization control of the nonlinear emission of semiconductor microcavities. Physical Review Letters. 89(7), (2002).

【5】Shelykh I, Kavokin K V, Kavokin A V et al. Semiconductor microcavity as a spin-dependent optoelectronic device. Physical Review B. 70(3), (2004).

【6】Xu P, Xia G Q, Wu Z M et al. Circular polarization switching and polarization bistability of optically pumped 1300 nm spin vertical-cavity surface-emitting lasers. Chinese Journal of Lasers. 45(4), (2018).
徐攀, 夏光琼, 吴正茂 等. 光抽运下1300 nm自旋垂直腔面发射激光器输出激光的圆偏振转换及偏振双稳特性. 中国激光. 45(4), (2018).

【7】Ohadi H and Kammann E. Liew T C H, et al. Spontaneous symmetry breaking in a polariton and photon laser. Physical Review Letters. 109(1), (2012).

【8】Feng L, El-Ganainy R and Ge L. Non-Hermitian photonics based on parity-time symmetry. Nature Photonics. 11(12), 752-762(2017).

【9】Yang F, Liu Y C and You L. Anti-PT symmetry in dissipatively coupled optical systems. Physical Review A. 96(5), (2017).

【10】Jahromi A K, Hassan A U, Christodoulides D N et al. Statistical parity-time-symmetric lasing in an optical fibre network. Nature Communications. 8, (2017).

【11】Wu J Y and Yang X B. Ultrastrong extraordinary transmission and reflection in PT-symmetric Thue-Morse optical waveguide networks. Optics Express. 25(22), 27724-27735(2017).

【12】Nazari F and Nazari M. Moravvej-Farshi M K. A 2×2 spatial optical switch based on PT-symmetry. Optics Letters. 36(22), 4368-4370(2011).

【13】Zhang Y C, Jiang X M, Xia J et al. Tunable high sensitivity temperature sensor based on transmittance changes of parity-time symmetry structure. Chinese Journal of Lasers. 45(7), (2018).
张亦弛, 江晓明, 夏景 等. 基于宇称-时间对称结构透射率变化的可调高灵敏度温度传感器. 中国激光. 45(7), (2018).

【14】Chong Y D, Ge L and Stone A D. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Physical Review Letters. 106(9), (2011).

【15】Ge L, Chong Y D and Stone A D. Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures. Physical Review A. 85(2), (2012).

【16】Nazari F, Bender N, Ramezani H et al. Optical isolation via PT-symmetric nonlinear Fano resonances. Optics Express. 22(8), 9574-9584(2014).

【17】Chang L, Jiang X S, Hua S Y et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nature Photonics. 8(7), 524-529(2014).

【18】Assawaworrarit S, Yu X F and Fan S H. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit. Nature. 546(7658), 387-390(2017).

【19】Inoue M, Arai K, Fujii T et al. Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers. Journal of Applied Physics. 83(11), 6768-6770(1998).

【20】Kato H, Matsushita T, Takayama A et al. Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals. Journal of Applied Physics. 93(7), 3906-3911(2003).

【21】Takeda E, Todoroki N, Kitamoto Y et al. Faraday effect enhancement in Co-ferrite layer incorporated into one-dimensional photonic crystal working as a Fabry-Pérot resonator. Journal of Applied Physics. 87(9), 6782-6784(2000).

【22】Steel M J, Levy M and Osgood R M. High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects. IEEE Photonics Technology Letters. 12(9), 1171-1173(2000).

【23】Steel M J, Levy M and Osgood R M. Jr. Photonic bandgaps with defects and the enhancement of Faraday rotation. Journal of Lightwave Technology. 18(9), 1297-1308(2000).

【24】Armelles G, Cebollada A, García-Martín A et al. Magnetoplasmonics: combining combining magnetic and plasmonic functionalities. Advanced Optical Materials. 1(1), 10-35(2013).

【25】Chin J Y, Steinle T, Wehlus T et al. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nature Communications. 4, (2013).

【26】Belotelov V I, Kreilkamp L E, Akimov I A et al. Plasmon-mediated magneto-optical transparency. Nature Communications. 4, (2013).

【27】Tsakmakidis K. Non-reciprocal plasmonics. Nature Materials. 12(5), (2013).

【28】Hu B, Wang Q J and Zhang Y. Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons. Optics Letters. 37(11), 1895-1897(2012).

【29】Wang X X, Bai X L, Pang Z Y et al. Surface-enhanced Raman scattering effect of composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate film. Acta Physica Sinica. 68(3), (2019).
王向贤, 白雪琳, 庞志远 等. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究. 物理学报. 68(3), (2019).

【30】Fang Y T, Zhu N and Zhou J. Orthogonal decomposition of elliptically polarized light through resonators composed of magnetic film. Journal of Magnetism and Magnetic Materials. 324(17), 2645-2648(2012).

【31】Wen X W, Li G J, Qiu G X et al. One-dimensional magneto optical multi-layer film isolator with multi-defect. Acta Physica Sinica. 53(10), 3571-3576(2004).
温晓文, 李国俊, 仇高新 等. 多缺陷结构的一维磁光多层膜隔离器. 物理学报. 53(10), 3571-3576(2004).

【32】Luo X G, Zhou M, Liu J F et al. Magneto-optical metamaterials with extraordinarily strong magneto-optical effect. Applied Physics Letters. 108(13), (2016).

【33】Cai W S and Shalaev V. Optical metamaterials: fundamentals and applications. New York: Springer. 59-74(2010).

引用该论文

Yiheng Wu, Xiaoxue Li, Yuntuan Fang. Multiple-Polarization Laser Based on Coupling of Conjugated and Magnetic Microcavities[J]. Chinese Journal of Lasers, 2019, 46(8): 0801009

吴义恒, 李小雪, 方云团. 基于共轭微腔和磁微腔耦合共振的多偏振态激光输出[J]. 中国激光, 2019, 46(8): 0801009

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF