首页 > 论文 > 光学学报 > 39卷 > 12期(pp:1228006--1)

基于对偶四元数构建的直线基元点云拼接方法

Line Primitive Point Cloud Registration Method Based on Dual Quaternion

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

当不同测站采集的点云数据存在遮挡时,无法获取完全对应的同名点特征,导致基于点特征的点云拼接方法失效。鉴于此,以同名直线特征为拼接基元,利用对偶四元数统一表示旋转参数和平移参数,依据基准测站和待拼接测站的平面法向量相等建立一种点云拼接平差模型来迭代求解平移向量和旋转矩阵;然后根据解析几何理论求解缩放系数,并将拼接后同名直线之间的单位方向向量和矩向量偏差中误差作为评价点云拼接精度的指标。实验结果表明,该平差模型能够实现存在遮挡问题的点云拼接,且拼接后同名直线矩向量偏差中误差可降低至0.0247 m。此外,该模型不仅能保留对偶四元数不依赖参数初值、收敛速度快的优点,又能解除对直线段两端点为同名点的限制。

Abstract

The point cloud registration method that uses point features may fail owing to its inability to obtain corresponding points when the point cloud data collected by different stations has the occlusion problem. Therefore, a registration adjustment model is established in this study to iteratively calculate the translation vector and rotation matrix based on the equivalence of the plane normal vectors between the reference and unregistered stations; subsequently, the scale factor is evaluated based on the analytic geometry theory, and the medium errors with respect to the unit direction vector and moment vector deviations of the homonymous lines after registration are considered to be the indexes for evaluating the point cloud registration accuracy. The experimental results denote that the registration adjustment model can realize point cloud registration under the occlusion condition. Furthermore, the results denote that the medium errors of the moment vector deviations of the homonymous lines can be reduced to 0.0247 m after registration. This model not only retains the advantages of the dual quaternion regardless of the initial values of the parameters and the fast convergence rate, but also eliminates the restriction that the two endpoints of the lines need to be corresponding points.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:P23

DOI:10.3788/AOS201939.1228006

所属栏目:遥感与传感器

基金项目:国家自然科学基金;

收稿日期:2019-07-12

修改稿日期:2019-09-02

网络出版日期:2019-12-01

作者单位    点击查看

柴双武:太原理工大学矿业工程学院, 山西 太原 030024
杨晓琴:太原理工大学矿业工程学院, 山西 太原 030024

联系人作者:柴双武(2964633881@qq.com); 杨晓琴(yangxiaoqin@tyut.edu.cn);

备注:国家自然科学基金;

【1】Besl P J. McKay N D. A method for registration of 3-D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992, 14(2): 239-256.

【2】Zhao M B, He J, Luo X B, et al. Two-viewing angle ladar data registration based on improved iterative closest-point algorithm [J]. Acta Optica Sinica. 2012, 32(11): 1128007.
赵明波, 何峻, 罗小波, 等. 基于改进迭代最近点算法的两视角激光雷达数据配准 [J]. 光学学报. 2012, 32(11): 1128007.

【3】Zeng F X, Li L, Diao X P. Iterative closest point algorithm registration based on curvature features [J]. Laser & Optoelectronics Progress. 2017, 54(1): 011003.
曾繁轩, 李亮, 刁鑫鹏. 基于曲率特征的迭代最近点算法配准研究 [J]. 激光与光电子学进展. 2017, 54(1): 011003.

【4】Zhang Z, Xu H L, Yin H. A fast point cloud registration algorithm based on key point selection [J]. Laser & Optoelectronics Progress. 2017, 54(12): 121002.
张哲, 许宏丽, 尹辉. 一种基于关键点选择的快速点云配准算法 [J]. 激光与光电子学进展. 2017, 54(12): 121002.

【5】Liu J, Bai D. 3D point cloud registration algorithm based on feature matching [J]. Acta Optica Sinica. 2018, 38(12): 1215005.
刘剑, 白迪. 基于特征匹配的三维点云配准算法 [J]. 光学学报. 2018, 38(12): 1215005.

【6】Yang X H, Wang H N. Application research of ICP algorithm in 3D point cloud alignment [J]. Computer Simulation. 2010, 27(8): 235-238.
杨现辉, 王惠南. ICP算法在3D点云配准中的应用研究 [J]. 计算机仿真. 2010, 27(8): 235-238.

【7】Zhang B, Yao W Q, Chen P. Research on building scanning point cloud registration based on geometric feature constraint [J]. Journal of Geodesy and Geodynamics. 2015, 35(3): 416-419.
张步, 姚顽强, 陈鹏. 基于几何特征的建筑物点云配准方法 [J]. 大地测量与地球动力学. 2015, 35(3): 416-419.

【8】Wang C, Shu Q, Yang Y X, et al. Quick registration algorithm of point clouds using structure feature [J]. Acta Optica Sinica. 2018, 38(9): 0911005.
王畅, 舒勤, 杨赟秀, 等. 利用结构特征的点云快速配准算法 [J]. 光学学报. 2018, 38(9): 0911005.

【9】Habib A, Ghanma M, Morgan M, et al. Photogrammetric and lidar data registration using linear features [J]. Photogrammetric Engineering and Remote Sensing. 2005, 71(6): 699-707.

【10】Guan Y L, Zhang H J. Initial registration for point clouds based on linear features . [C]//2011 Fourth International Symposium on Knowledge Acquisition and Modeling, October 8-9, 2011, Sanya, China. New York: IEEE. 2011, 12493373.

【11】Wang Y B, Yang H C, Liu Y H, et al. Linear-feature-constrained registration of LiDAR point cloud via quaternion [J]. Geomatics and Information Science of Wuhan University. 2013, 38(9): 1057-1062.
王永波, 杨化超, 刘燕华, 等. 线状特征约束下基于四元数描述的LiDAR点云配准方法 [J]. 武汉大学学报(信息科学版). 2013, 38(9): 1057-1062.

【12】Wang Y B, Wang Y J, Han X Z, et al. A unit quaternion based, point-linear feature constrained registration approach for terrestrial LiDAR point clouds [J]. Journal of China University of Mining & Technology. 2018, 47(3): 671-677.
王永波, 汪云甲, 韩新哲, 等. 点线特征约束下基于单位四元数描述的LiDAR点云配准算法 [J]. 中国矿业大学学报. 2018, 47(3): 671-677.

【13】Walker M W, Shao L J, Volz R A. Estimating 3-D location parameters using dual number quaternions [J]. CVGIP: Image Understanding. 1991, 54(3): 358-367.

【14】Kong X L. LiDAR point cloud registration algorithm based on dual quaternion [J]. Journal of Geomatics. 2017, 42(6): 46-49.
孔祥丽. 基于对偶四元数描述的LiDAR点云解析配准算法 [J]. 测绘地理信息. 2017, 42(6): 46-49.

【15】Wang Y B, Wang Y J, Wu K, et al. A dual quaternion-based, closed-form pairwise registration algorithm for point clouds [J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2014, 94: 63-69.

【16】Sheng Q H, Chen S W, Liu J F, et al. LiDAR point cloud registration based on Plücker line [J]. Acta Geodaetica et Cartographica Sinica. 2016, 45(1): 58-64.
盛庆红, 陈姝文, 柳建锋, 等. 基于Plücker直线的LiDAR点云配准法 [J]. 测绘学报. 2016, 45(1): 58-64.

【17】Yuan Z C, Lu T D, Deng X Y. Comparison of parameter estimation methods for rigid motion of point cloud [J]. Engineering of Surveying and Mapping. 2018, 27(4): 34-40.
袁志聪, 鲁铁定, 邓小渊. 点云的刚体运动参数估计方法的比较 [J]. 测绘工程. 2018, 27(4): 34-40.

【18】Wang Y B, Wang Y J, She W W, et al. A linear features-constrained, Plücker coordinates-based, closed-form registration approach to terrestrial LiDAR point clouds [J]. Geomatics and Information Science of Wuhan University. 2018, 43(9): 1376-1384.
王永波, 汪云甲, 佘雯雯, 等. 直线特征约束下利用Plücker坐标描述的LiDAR点云无初值配准方法 [J]. 武汉大学学报(信息科学版). 2018, 43(9): 1376-1384.

【19】Ma T F, Lu X P, Lu F N. A direct solution of three-dimensional space coordinate transformation based on dual quaternion [J]. Journal of Geodesy and Geodynamics. 2017, 37(12): 1276-1280.
马涛峰, 卢小平, 禄丰年. 基于对偶四元数的三维空间坐标转换直接解法 [J]. 大地测量与地球动力学. 2017, 37(12): 1276-1280.

【20】Tommaselli A M G, Tozzi C L. A recursive approach to space resection using straight lines [J]. Photogrammetric Engineering and Remote Sensing. 1996, 62(1): 57-66.

引用该论文

Chai Shuangwu,Yang Xiaoqin. Line Primitive Point Cloud Registration Method Based on Dual Quaternion[J]. Acta Optica Sinica, 2019, 39(12): 1228006

柴双武,杨晓琴. 基于对偶四元数构建的直线基元点云拼接方法[J]. 光学学报, 2019, 39(12): 1228006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF