首页 > 论文 > 中国激光 > 46卷 > 12期(pp:1202009--1)

抛光过程中光学元件表面划痕的形成和控制

Formation and Control of Scratches on Surfaces of Optical Components During Polishing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过在石英玻璃的抛光过程中引入α-Al2O3颗粒,对抛光过程中石英工件表面产生的划痕类型和收尾阶段不同粒径杂质颗粒产生的划痕长度进行分析,同时研究了抛光液质量分数和抛光盘结构对石英玻璃抛光质量的影响。结果表明:杂质颗粒需要盘面提供足够大的支撑力才能在工件表面产生划痕,而杂质颗粒所受盘面的支撑力大小取决于其位置高度和共同参与受力的基质颗粒数量;杂质颗粒的位置高度很难掌控,但在相同工艺条件下,使用质量分数为6%的抛光粉和具有多微孔结构的沥青抛光盘可以有效降低划痕的产生概率,并且不会导致抛光表面粗糙度变差或过度影响抛光效率,对实际加工生产有指导意义。

Abstract

The types of surface scratches on the fused-silica workpiece during the polishing process and the length of the scratches caused by impurity particles having different particle sizes in the ending stage are analyzed by introducing α-AL2O3 particles into the polishing process of fused-silica glass. Further, the effects of the polishing-powder mass fraction in the polishing solution and the polishing pad structure on the polishing quality of the fused-silica glass are studied. Results show that the impurity particles require sufficient support force provided by the polishing pad to produce scratches on the surface of the workpiece; the support force of the polishing pad on which the impurity particles are subjected depends on their positional height and the number of matrix particles participating in the polishing process. It is difficult to control the positional height of the impurity particles; however, at a relatively high polishing-powder mass fraction of 6%, the microporous pitch-polishing pad effectively reduces the scratching probability without introducing surface roughness or excessively affecting the polishing efficiency under identical process conditions. These observations exhibit guiding significance for processing and production.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG356.28

DOI:10.3788/CJL201946.1202009

所属栏目:激光制造

基金项目:国家自然科学基金国家重大科研仪器研制项目、国家自然科学基金面上项目、中国科学院科研仪器设备研制项目;

收稿日期:2019-04-23

修改稿日期:2019-08-29

网络出版日期:2019-12-01

作者单位    点击查看

汤文龙:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800中国科学院大学, 北京 100049
梁尚娟:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800中国科学院大学, 北京 100049
焦翔:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
樊全堂:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
尹进:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
朱健强:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800

联系人作者:朱健强(jqzhu@mail.shcnc.ac.cn)

备注:国家自然科学基金国家重大科研仪器研制项目、国家自然科学基金面上项目、中国科学院科研仪器设备研制项目;

【1】Campbell J, Hawley-Fedder R, Stolz C, et al. NIF optical materials and fabrication technologies: an overview [J]. Proceedings of SPIE. 2004, 5341: 84-101.

【2】McLeod J H, Sherwood W T. A proposed method of specifying appearance defects of optical parts [J]. Journal of the Optical Society of America. 1945, 35(2): 136-138.

【3】Aikens D M. The truth about scratch and dig . [C]//International Optical Design Conference and Optical Fabrication and Testing, June 13-17, 2010, Jackson Hole, Wyoming, United States. Washington, D.C.: OSA. 2010, OTuA2.

【4】Guo Y J, Tang S X, Jiang X Q, et al. Damage inspection of optical surface based on galvanometer scanning [J]. Acta Optica Sinica. 2017, 37(6): 0612003.
郭亚晶, 唐顺兴, 姜秀青, 等. 基于振镜扫描方式的光学元件表面损伤检测 [J]. 光学学报. 2017, 37(6): 0612003.

【5】Han J H. Study on controlling the super smooth surface roughness of optical components [D]. Sichuan: Sichuan University. 2006.
韩敬华. 控制光学元件超光滑表面粗糙度的研究 [D]. 四川: 四川大学. 2006.

【6】Liang S J, Tang W L, Jiao X, et al. Effect of modified polishing agent on polishing quality of optical glass [J]. Chinese Journal of Lasers. 2017, 44(12): 1203001.
梁尚娟, 汤文龙, 焦翔, 等. 改性抛光剂对光学玻璃抛光质量的影响 [J]. 中国激光. 2017, 44(12): 1203001.

【7】Chandra A, Karra P, Bastawros A F, et al. Prediction of scratch generation in chemical mechanical planarization [J]. CIRP Annals. 2008, 57(1): 559-562.

【8】Ring T A, Feeney P, Boldridge D, et al. Brittle and ductile fracture mechanics analysis of surface damage caused during CMP [J]. Journal of the Electrochemical Society. 2007, 154(3): H239-H248.

【9】Suratwala T, Steele R, Feit M D, et al. Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing [J]. Journal of Non-Crystalline Solids. 2008, 354(18): 2023-2037.

【10】Evans C J, Paul E, Dornfeld D, et al. Material removal mechanisms in lapping and polishing [J]. CIRP Annals. 2003, 52(2): 611-633.

【11】Suratwala T, Wong L, Miller P, et al. Sub-surface mechanical damage distributions during grinding of fused silica [J]. Journal of Non-Crystalline Solids. 2006, 352(52/53/54): 5601-5617.

【12】Bulsara V H, Chandrasekar S. Direct observation of contact damage around scratches in brittle solids [J]. Proceedings of SPIE. 1997, 3060: 76-88.

【13】Kwon T Y, Cho B J, Ramachandran M, et al. Investigation of source-based scratch formation during oxide chemical mechanical planarization [J]. Tribology Letters. 2013, 50(2): 169-175.

【14】Swain M V. Microfracture about scratches in brittle solids [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1979, 366(1727): 575-597.

【15】Zhang Y T. Theory of thermo-viscoelasticity[M]. Tianjin: Tianjin University Press, 2002.
张义同. 热粘弹性理论[M]. 天津: 天津大学出版社, 2002.

【16】Chen K H, Lambropoulos J C. Inverse topographic analysis of scratches [J]. Proceedings of SPIE. 2003, 5180: 29-39.

【17】Choi J G, Prasad Y N, Kim I K, et al. The synergetic role of pores and grooves of the pad on the scratch formation during STI CMP [J]. Journal of the Electrochemical Society. 2010, 157(8): H806-H809.

引用该论文

Tang Wenlong,Liang Shangjuan,Jiao Xiang,Fan Quantang,Yin Jin,Zhu Jianqiang. Formation and Control of Scratches on Surfaces of Optical Components During Polishing[J]. Chinese Journal of Lasers, 2019, 46(12): 1202009

汤文龙,梁尚娟,焦翔,樊全堂,尹进,朱健强. 抛光过程中光学元件表面划痕的形成和控制[J]. 中国激光, 2019, 46(12): 1202009

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF