首页 > 论文 > 激光与光电子学进展 > 56卷 > 21期(pp:211003--1)

基于滑动滤波和自动区域生长的陶瓷瓦表面裂纹检测

Surface Crack Detection of Ceramic Tile Based on Sliding Filter and Automatic Region Growth

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对具有复杂背景干扰和立体结构的陶瓷瓦表面裂纹缺陷,提出基于滑动滤波和自动区域生长的方法对陶瓷瓦表面裂纹进行提取。首先对采集图像进行预处理,并将图像分割为瓦头和纹理两个区域;然后用自定义滑动滤波法对瓦头区域的裂纹缺陷进行检测,用自动区域生长方法检测纹理区域的裂纹;最后用形态学运算去除杂散干扰点,提取裂纹的特征参数。实验结果表明,本文方法可有效去除复杂背景干扰,能提取出立体结构的陶瓷瓦表面裂纹。

Abstract

This study proposes a method which combines sliding filter with automatic region growth to extract surface crack defects on ceramic tiles with complex background interference and stereochemical structure. First, the acquired image is preprocessed and divided into two regions, namely tile head and texture area. Crack defects in the tile head region are detected by the customized sliding filter method, whereas those in the texture area are detected by the automatic region growth method. Finally, a morphological operation removes the spurious interference points and extracts the characteristic parameters of the cracks. Experimental results demonstrate that the proposed method effectively removes the complex background interference and extracts the surface cracks of ceramic tiles with stereochemical structure.

中国激光微信矩阵
补充资料

中图分类号:TP391

DOI:10.3788/LOP56.211003

所属栏目:图像处理

基金项目:国家自然科学基金;

收稿日期:2019-04-01

修改稿日期:2019-04-30

网络出版日期:2019-11-01

作者单位    点击查看

李小磊:三峡大学电气与新能源学院, 湖北 宜昌 443002
曾曙光:三峡大学理学院, 湖北 宜昌 443002
郑胜:三峡大学理学院, 湖北 宜昌 443002
肖焱山:三峡大学理学院, 湖北 宜昌 443002
张绍伟:三峡大学理学院, 湖北 宜昌 443002
李强:三峡大学理学院, 湖北 宜昌 443002

联系人作者:曾曙光(zengshuguang@163.com)

备注:国家自然科学基金;

【1】Xiang S B, Su G D, Chen J S et al. Brick stack anomaly detection and recognition based on machine vision. Acta Optica Sinica. 31(7), (2011).
向守兵, 苏光大, 陈健生 等. 基于机器视觉的码坯异常检测与识别. 光学学报. 31(7), (2011).

【2】Hao Y, Zhao X, Wen Q H et al. Roller missing detection in deep groove ball bearings based on machine vision. Laser & Optoelectronics Progress. 55(2), (2018).
郝勇, 赵翔, 温钦华 等. 基于机器视觉的深沟球轴承滚珠遗漏检测. 激光与光电子学进展. 55(2), (2018).

【3】Li L F and Sun R Y. Bridge crack detection algorithm based on image processing under complex background. Laser & Optoelectronics Progress. 56(6), (2019).
李良福, 孙瑞赟. 复杂背景下基于图像处理的桥梁裂缝检测算法. 激光与光电子学进展. 56(6), (2019).

【4】Qu Z, Lin L D, Guo Y et al. An improved algorithm for image crack detection based on percolation model. IEEJ Transactions on Electrical and Electronic Engineering. 10(2), 214-221(2015).

【5】Yang X F, Wu Y Y and Zhao L. Pipeline crack detection algorithm based on Canny detector. Computer Engineering and Design. 39(3), 798-803(2018).
杨先凤, 吴媛媛, 赵玲. 基于Canny改进算子的油管裂纹检测算法. 计算机工程与设计. 39(3), 798-803(2018).

【6】Wang X Y and Gao X H. Image segmentation method of self-adopting threshold. Infrared and Laser Engineering. 35(S4), 167-171(2006).
王歆玥, 高旭辉. 一种自适应阈值分割方法. 红外与激光工程. 35(S4), 167-171(2006).

【7】Xie B, Zhu B, Zhang H W et al. Gradient clustering algorithm based on deep learning aerial image detection. Laser & Optoelectronics Progress. 56(6), (2019).
解博, 朱斌, 张宏伟 等. 基于深度学习航拍图像检测的梯度聚类算法. 激光与光电子学进展. 56(6), (2019).

【8】Yang C L, Yin G F, Jiang H H et al. On magnetic tile surfaces defect detection based on wavelet transform. Computer Applications and Software. 31(11), 210-213, 274(2014).
杨成立, 殷国富, 蒋红海 等. 基于小波变换的磁瓦表面缺陷检测方法研究. 计算机应用与软件. 31(11), 210-213, 274(2014).

【9】Yuan X C, Wu L S and Chen H W. Improved image preprocessing algorithm for rail surface defects detection. Journal of Computer-Aided Design & Computer Graphics. 26(5), 800-805(2014).
袁小翠, 吴禄慎, 陈华伟. 钢轨表面缺陷检测的图像预处理改进算法. 计算机辅助设计与图形学学报. 26(5), 800-805(2014).

【10】Hua C J, Xiong X M and Chen Y. Feature extraction of workpiece circular arc contour based on Sobel operator. Laser & Optoelectronics Progress. 55(2), (2018).
化春键, 熊雪梅, 陈莹. 基于Sobel算子的工件圆弧轮廓特征提取. 激光与光电子学进展. 55(2), (2018).

【11】Mei F and Zhao C H. Spatial filter based anomaly detection algorithm for hyperspectral imagery kernel RX detectors. Journal of Harbin Engineering University. 30(6), 697-702(2009).
梅锋, 赵春晖. 基于空域滤波的核RX高光谱图像异常检测算法. 哈尔滨工程大学学报. 30(6), 697-702(2009).

【12】Yang J H, Liu J, Zhong J C et al. A color image segmentation algorithm by integrating watershed with automatic seeded region growing. Journal of Image and Graphics. 15(1), 63-68(2010).
杨家红, 刘杰, 钟坚成 等. 结合分水岭与自动种子区域生长的彩色图像分割算法. 中国图象图形学报. 15(1), 63-68(2010).

【13】Hazlyna H N, Aini H H, Fadzilah S et al. Fusion 7×7 median filter and seeded region growing area extraction algorithms for effective detection of acute leukemia based on blood images. Journal of Fundamental and Applied Sciences. 10(3S), 726-737(2018).

【14】Zhang Q F and Gao J. Research progress of lighting technology in machine vision. China Illuminating Engineering Journal. 22(2), 31-37(2011).
张巧芬, 高健. 机器视觉中照明技术的研究进展. 照明工程学报. 22(2), 31-37(2011).

【15】Li J S, Ma Y, Zhao F Z et al. A novel arithmetic of image edge detection of Canny operator. Acta Photonica Sinica. 40(S1), 50-54(2011).
李俊山, 马颖, 赵方舟 等. 改进的Canny图像边缘检测算法. 光子学报. 40(S1), 50-54(2011).

【16】Du F, Shi W K, Deng Y et al. Fast infrared image segmentation method. Journal Infrared Millimeter and Waves. 24(5), 370-373(2005).
杜峰, 施文康, 邓勇 等. 一种快速红外图像分割方法. 红外与毫米波学报. 24(5), 370-373(2005).

【17】Singh R and Khare A. Fusion of multimodal medical images using Daubechies complex wavelet transform - a multiresolution approach. Information Fusion. 19, 49-60(2014).

引用该论文

Li Xiaolei,Zeng Shuguang,Zheng Sheng,Xiao Yanshan,Zhang Shaowei,Li Qiang. Surface Crack Detection of Ceramic Tile Based on Sliding Filter and Automatic Region Growth[J]. Laser & Optoelectronics Progress, 2019, 56(21): 211003

李小磊,曾曙光,郑胜,肖焱山,张绍伟,李强. 基于滑动滤波和自动区域生长的陶瓷瓦表面裂纹检测[J]. 激光与光电子学进展, 2019, 56(21): 211003

被引情况

【1】李强,曾曙光,郑胜,肖焱山,张绍伟,李小磊. 基于机器视觉的陶瓷瓦表面裂纹检测方法. 激光与光电子学进展, 2020, 57(8): 81004--1

【2】周飘,李强,曾曙光,郑胜,肖焱山,张绍伟,李小磊. 基于多尺度Hessian矩阵滤波的陶瓷瓦表面裂纹检测方法. 激光与光电子学进展, 2020, 57(10): 101022--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF