首页 > 论文 > 激光与光电子学进展 > 56卷 > 13期(pp:132802--1)

基于单模-多模-单模拉锥结构的高灵敏度光纤布拉格光栅应变传感器

High-Sensitivity Fiber Bragg Grating Strain Sensor Based on Singlemode-Multimode-Singlemode Tapered Structure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于单模-多模-单模拉锥结构的光纤布拉格光栅 (FBG) 传感器,该传感器能有效提高应变的检测灵敏度。多模光纤具有孔径大、易耦合、写制光栅较容易、可承受应变较大等优点,使光栅区域位于拉锥多模光纤处,则该多模拉锥光纤的光栅可使传感器获得更高的应变探测精度和灵敏度。通过控制多模光纤的拉伸长度,制作了多个不同锥度的传感器。先将一段长度为1.7 cm的多模光纤对芯熔接在两段单模光纤中间,然后对多模光纤段分别进行长度为0.8,0.9,1.0 cm的拉锥,在多模光纤锥区一侧写入长度为7 mm的FBG。通过分析反射谱中谐振波长的变化来监测温度、应变的改变。实验结果表明,该传感器的应变检测范围为0~960 με,应变灵敏度最高可达15.5 pm/με,而温度灵敏度为10.5 pm/℃,锥区半径越细则应变灵敏度提升越明显。由于应变灵敏度相对传统FBG有大幅提高,而温度传感特性保持不变,在没有温度补偿的情况下,温度引起的应变误差仅为0.677 με/℃,降低了应变和温度之间的交叉敏感性。

Abstract

This study proposes a fiber Bragg grating (FBG) sensor based on a singlemode-multimode-singlemode tapered structure that can effectively increase strain sensitivity. The grating is located at the tapered-multimode fiber region. A multimode fiber has the advantages of large aperture, easy coupling, easy writing of gratings, and the ability to withstand large strain. The use of tapered-multimode fiber gratings for strain sensing provides high accuracy and sensitivity. We produce multiple sensors with different tapers by changing the stretched length of the multimode fiber. Firstly, a 1.7-cm-long multimode fiber is welded between two singlemode fibers. Then, the middle multimode fiber section is tapered to 0.8, 0.9, and 1.0 cm, respectively. Subsequently, a 7-mm-long Bragg grating is written on the side of the multimode fiber cone. Changes in external parameters, such as temperature and strain, are monitored by analyzing the change of the resonant wavelength in the reflection spectrum. The experimental results show that the strain detection range of the sensor is 0-960 με,the highest strain sensitivity of the sensor can reach 15.5 pm/με, and the temperature sensitivity is 10.5 pm/℃. Furthermore, the thinner the cone radius is, the more obvious the increase in strain sensitivity is. The strain sensitivity is considerably improved compared with that of the conventional FBG, and the temperature sensing characteristics remain unchanged; hence, the temperature-induced strain error is only 0.677 με/℃ without temperature compensation, which reduces the cross-sensitivity between strain and temperature.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.132802

所属栏目:遥感与传感器

基金项目:国家自然科学基金、 湖北省自然科学基金;

收稿日期:2019-01-08

修改稿日期:2019-01-28

网络出版日期:2019-07-01

作者单位    点击查看

王洪海:武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430070
彭思敏:武汉理工大学信息工程学院, 湖北 武汉 430070
桂鑫:武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430070武汉理工大学信息工程学院, 湖北 武汉 430070
王昌佳:武汉理工大学信息工程学院, 湖北 武汉 430070
李政颖:武汉理工大学信息工程学院, 湖北 武汉 430070

联系人作者:王洪海(wanghh@whut.edu.cn)

备注:国家自然科学基金、 湖北省自然科学基金;

【1】Wu Y H, Shao C J, Qu W J et al. Simplified time-dependant optical-mechanical transformation equation for FBG strain sensors. Acta Optica Sinica. 30(7), 1965-1970(2010).
吴永红, 邵长江, 屈文俊 等. 简化的光纤光栅应变传感器光-力转换的时变方程. 光学学报. 30(7), 1965-1970(2010).

【2】Liu Y, Li Y M, Lu Y L et al. High-sensitivity strain sensor of long period fiber grating based on grooved technology. Laser & Optoelectronics Progress. 53(10), (2016).
刘宇, 李云梅, 路永乐 等. 高灵敏度刻槽型长周期光纤光栅应变传感器. 激光与光电子学进展. 53(10), (2016).

【3】You C T, Chen P C and Ding P F. Experimental research on single mode-multimode-single mode fiber structure in security system. Laser & Optoelectronics Progress. 55(6), (2018).
游赐天, 陈沛超, 丁攀峰. 单模-多模-单模光纤结构在安防系统的实验研究. 激光与光电子学进展. 55(6), (2018).

【4】Zhao Y, Cai L, Li X G et al. Investigation of the high sensitivity RI sensor based on SMS fiber structure. Sensors and Actuators A: Physical. 205, 186-190(2014).

【5】Oliveira R. Marques T H R, Bilro L, et al. Multiparameter POF sensing based on multimode interference and fiber Bragg grating. Journal of Lightwave Technology. 35(1), 3-9(2017).

【6】Chen Y F, Han Q, He Y et al. Study of single mode-multimode-single mode refractive index sensor based on no core fiber. Chinese Journal of Lasers. 40(9), (2013).
陈耀飞, 韩群, 何洋 等. 基于无芯光纤的单模-多模-单模折射率传感器的研究. 中国激光. 40(9), (2013).

【7】Shao M, Qiao X G, Fu H W et al. Fiber humidity sensor based on fiber Bragg grating sandwiched in SMS fiber structure. Spectroscopy and Spectral Analysis. 36(9), 3008-3013(2016).
邵敏, 乔学光, 傅海威 等. 光纤布拉格光栅嵌入SMS光纤结构的湿度传感器. 光谱学与光谱分析. 36(9), 3008-3013(2016).

【8】Zhang J Z, Sun W M, Yuan L B et al. Design of a single-multimode-single-mode filter demodulator for fiber Bragg grating sensors assisted by mode observation. Applied Optics. 48(30), 5642-5646(2009).

【9】Li B Y. The SMS fiber structure based fiber Bragg grating and its sensing application. Harbin: Harbin Engineering University. (2013).
李保勇. 基于SMS光纤结构的布拉格光纤光栅及其传感应用. 哈尔滨: 哈尔滨工程大学. (2013).

【10】Song D W, Chai Q, Liu Y L et al. A simultaneous strain and temperature sensing module based on FBG-in-SMS. Measurement Science and Technology. 25(5), (2014).

【11】Okude S, Sudoh M, Shima K et al. A novel technique for suppressing undesired coupling of LP01 mode to cladding modes in fiber Bragg gratings. [C]∥Optical Fiber Sensors 1996, May 21-21, 1996, Sapporo, Japan. Washington, D. C.: OSA. We54, (1996).

【12】Jiang D S and He W. Review of applications for fiber Bragg grating sensors. Journal of Optoelectronics·Laser. 13(4), 420-430(2002).
姜德生, 何伟. 光纤光栅传感器的应用概况. 光电子·激光. 13(4), 420-430(2002).

【13】Li Z Y, Sun W F and Wang H H. Research on the ultra-weak reflective fiber Bragg grating sensing technology based on optical frequency domain reflection technology. Acta Optica Sinica. 35(8), (2015).
李政颖, 孙文丰, 王洪海. 基于光频域反射技术的超弱反射光纤光栅传感技术研究. 光学学报. 35(8), (2015).

【14】Zhang C, Yang N, Bao Y et al. Spectral resolution improvement technique for optical frequency-domain reflectometry-based optical fiber distributed sensing. Acta Optica Sinica. 37(8), (2017).
张超, 杨楠, 包艳 等. 基于光频域反射计的光纤分布式传感中光谱分辨率提升技术. 光学学报. 37(8), (2017).

【15】Sun S H, Yu Y L, Li H et al. Detection technique of stress waves based on fiber Bragg grating. Chinese Journal of Lasers. 43(5), (2016).
孙诗惠, 余有龙, 李慧 等. 基于光纤光栅的应力波检测技术研究. 中国激光. 43(5), (2016).

【16】He W, Li J Z, Chen H B et al. Strain sensing properties of multimode fiber Bragg gratings. Journal of Transducer Technology. 22(12), 15-17(2003).
何伟, 李剑芝, 陈宏波 等. 多模光纤光栅的应变传感特性. 传感器技术. 22(12), 15-17(2003).

【17】Su H, Wang J, Liu L L et al. Optical fiber grating temperature and axial tension sensing system based on swept source. Laser & Optoelectronics Progress. 54(4), (2017).
苏红, 王健, 刘岚岚 等. 基于扫频光源的光纤光栅温度和轴向拉力传感系统. 激光与光电子学进展. 54(4), (2017).

【18】Wang M G, Wei H, Tong Z et al. Simultaneous measurement of strain and temperature using a single dual-period fiber grating. Acta Optica Sinica. 22(7), 867-869(2002).
王目光, 魏淮, 童治 等. 利用双周期光纤光栅实现应变和温度同时测量. 光学学报. 22(7), 867-869(2002).

【19】Wang Y P, Xiao L M, Wang D N et al. Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity. Optics Letters. 31(23), 3414-3416(2006).

引用该论文

Honghai Wang, Simin Peng, Xin Gui, Changjia Wang, Zhengying Li. High-Sensitivity Fiber Bragg Grating Strain Sensor Based on Singlemode-Multimode-Singlemode Tapered Structure[J]. Laser & Optoelectronics Progress, 2019, 56(13): 132802

王洪海, 彭思敏, 桂鑫, 王昌佳, 李政颖. 基于单模-多模-单模拉锥结构的高灵敏度光纤布拉格光栅应变传感器[J]. 激光与光电子学进展, 2019, 56(13): 132802

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF