High Power Laser Science and Engineering, 2020, 8 (4): 04000e38, Published Online: Nov. 23, 2020  

Asymmetric pulse effects on pair production in polarized electric fields Download: 566次

Author Affiliations
1 Key Laboratory of Beam Technology of the Ministry of Education, and College of Nuclear Science and Technology, Beijing Normal University, Beijing100875, China
2 Xinjiang Police College, Urumqi830011, China
3 School of Science, China University of Mining and Technology, Beijing100083, China
4 Beijing Radiation Center, Beijing100875, China
Abstract
Using the Dirac–Heisenberg–Wigner formalism, effects of the asymmetric pulse shape on the generation of electron-positron pairs in three typical polarized fields, i.e., linear, middle elliptical and circular fields, are investigated. Two kinds of asymmetries for the falling pulse length, short and elongated, are studied. We find that the interference effect disappears with the shorter pulse length and that the peak value of the momentum spectrum is concentrated in the center of the momentum space. In the case of the extending falling pulse length, a multiring structure without interference appears in the momentum spectrum. Research results show that the momentum spectrum is very sensitive to the asymmetry of the pulse as well as to the polarization of the fields. We also find that the number density of electron-positron pairs under different polarizations is sensitive to the asymmetry of the electric field. For the short falling pulse, the number density can be significantly enhanced by over two orders of magnitude. These results could be useful in planning high-power and/or high-intensity laser experiments.

Obulkasim Olugh, Zi-Liang Li, Bai-Song Xie. Asymmetric pulse effects on pair production in polarized electric fields[J]. High Power Laser Science and Engineering, 2020, 8(4): 04000e38.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!