首页 > 论文 > 中国激光 > 47卷 > 3期(pp:304007--1)

基于光纤布拉格光栅传感的齿轮故障检测方法

A Gear Fault Detection Method Based on a Fiber Bragg Grating Sensor

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对齿轮故障难以识别的问题,提出了一种用于齿轮异常状态识别的自适应噪声补偿聚合经验模态分解方法。利用光纤布拉格光栅(FBG)传感器提取齿轮的振动信号,通过自适应补偿高斯白噪声使振动信号频谱均匀化,以消除经验模态算法分解产生的模态混叠现象。利用相关系数和峭度值组成综合评价指标来选择有效分量,并提取其特征,采用支持向量机对齿轮故障进行识别与分类。实验结果表明:所提方法能有效地识别齿轮的不同状态(正常、轻度磨损、重度磨损、点蚀、裂纹以及断齿等),识别正确率均在90%以上。

Abstract

In this study, we propose a gear fault identification method based on adaptive-noise complementary ensemble empirical mode decomposition to solve the problem associated with the identification of gear faults. Initially, we used a fiber Bragg grating to extract the gear vibration signals, and uniformized the spectrum of vibration signal by adaptively adding Gaussian white noise to eliminate the mode mixing caused by the empirical modal algorithm. Subsequently, we used the correlation coefficient and the kurtosis value to obtain comprehensive evaluation indexes for selecting the effective components and extracting the features of the effective components. Finally, we used a support vector machine to identify the gear faults. The experimental results denote that the proposed method can be used to effectively identify the states of gears, including normal, mild-wear, severe-wear, pitting, cracks, broken teeth. Furthermore, the gear state identification accuracy is more than 90%.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN253; TN911.7

DOI:10.3788/CJL202047.0304007

所属栏目:测量与计量

基金项目:国家自然科学基金;

收稿日期:2019-09-16

修改稿日期:2019-10-28

网络出版日期:2020-03-01

作者单位    点击查看

陈勇:重庆邮电大学工业物联网与网络化教育部重点实验室, 重庆 400065
陈亚武:重庆邮电大学工业物联网与网络化教育部重点实验室, 重庆 400065
刘志强:重庆邮电大学工业物联网与网络化教育部重点实验室, 重庆 400065
刘焕淋:重庆邮电大学光纤通信重点实验室, 重庆 400065

联系人作者:陈勇(chenyong@cqupt.edu.cn)

备注:国家自然科学基金;

【1】Jiang G Q, He H B, Yan J, et al. Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox [J]. IEEE Transactions on Industrial Electronics. 2019, 66(4): 3196-3207.

【2】Yang Q, Hu C Z, Zheng N G. Data-driven diagnosis of nonlinearly mixed mechanical faults in wind turbine gearbox [J]. IEEE Internet of Things Journal. 2018, 5(1): 466-467.

【3】Zhou W, Liang Q. Real-time spectrum analysis algorithm for non-stationary signal and it''''s implementation on FPGA platforms [J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition). 2018, 30(5): 633-641.
周围, 梁琦. 非平稳信号实时谱分析算法及其FPGA实现 [J]. 重庆邮电大学学报(自然科学版). 2018, 30(5): 633-641.

【4】Wang J, Cheng F Z, Qiao W, et al. Multiscale filtering reconstruction for wind turbine gearbox fault diagnosis under varying-speed and noisy conditions [J]. IEEE Transactions on Industrial Electronics. 2018, 65(5): 4268-4278.

【5】Zhang M, Wang K S, Wei D D, et al. Amplitudes of characteristic frequencies for fault diagnosis of planetary gearbox [J]. Journal of Sound and Vibration. 2018, 432: 119-132.

【6】Chen Y, Wu C T, Liu H L. EMD self-adaptive selecting relevant modes algorithm for FBG spectrum signal [J]. Optical Fiber Technology. 2017, 36: 63-67.

【7】Amarnath M. Praveen Krishna I R. Local fault detection in helical gears via vibration and acoustic signals using EMD based statistical parameter analysis [J]. Measurement. 2014, 58: 154-164.

【8】Pan P, Xi L X, Zhang X G, et al. Experimental research on polarization mode dispersion measurement based on empirical mode decomposition [J]. Chinese Journal of Lasers. 2018, 45(1): 0106002.
潘潘, 席丽霞, 张晓光, 等. 基于经验模态分解的偏振模色散测量实验研究 [J]. 中国激光. 2018, 45(1): 0106002.

【9】Chen J Y, Zhou D, Liu C, et al. An integrated method based on CEEMD-SampEn and the correlation analysis algorithm for the fault diagnosis of a gearbox under different working conditions [J]. Mechanical Systems and Signal Processing. 2018, 113: 102-111.

【10】Zhao C R, Jin X F, Ni D C, et al. Optical fiber rotational speed sensor based on plastic optical fiber and optical prism [J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition). 2016, 28(3): 383-388.
赵呈锐, 金晓峰, 倪大成, 等. 基于塑料光纤和棱镜结构的光纤式转速传感器 [J]. 重庆邮电大学学报(自然科学版). 2016, 28(3): 383-388.

【11】Chen Y, Liu B L, Liu H L, et al. Load location and measurement system based on fiber Bragg grating sensor [J]. Chinese Journal of Mechanical Engineering. 2016, 52(18): 8-15.
陈勇, 刘保林, 刘焕淋, 等. 基于光纤布拉格光栅的载荷定位与检测方法 [J]. 机械工程学报. 2016, 52(18): 8-15.

【12】Chen Y, Zhou L X, Liu H L. A fiber Bragg grating sensor perimeter intrusion localization method optimized by improved particle swarm optimization algorithm [J]. IEEE Sensors Journal. 2018, 18(3): 1243-1249.

【13】Liu H L, Wang C J, Chen Y. An improved genetic algorithm for increasing the addressing accuracy of encoding fiber Bragg grating sensor network [J]. Optical Fiber Technology. 2018, 40: 28-35.

【14】He C B, Cai S K, Sun D K, et al. Fault diagnosis of wind turbine planetary gearbox based on order analysis and divergence index [J]. The Journal of Engineering. 2017, 2017(13): 1394-1398.

【15】Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences. 1998, 454(1971): 903-995.

【16】Lian J J, Rong Q B, Dong X F, et al. Structural model parameter identification method based on an improved HHT for suppressing mode mixing [J]. Journal of Vibration and Shock. 2018, 37(18): 1-8.
练继建, 荣钦彪, 董霄峰, 等. 抑制模态混叠的HHT结构模态参数识别方法研究 [J]. 振动与冲击. 2018, 37(18): 1-8.

【17】Zhang X, Cui W, Liu Y L. Recovery of structured signals with prior information via maximizing correlation [J]. IEEE Transactions on Signal Processing. 2018, 66(12): 3296-3310.

【18】Zhang L, Mao Z D, Yang S X, et al. An improved Kurtogram based on band-pass envelope spectral Kurtosis with its application in bearing fault diagnosis [J]. Journal of Vibration and Shock. 2018, 37(23): 171-179.
张龙, 毛志德, 杨世锡, 等. 基于包络谱带通峭度的改进谱峭度方法及在轴承诊断中的应用 [J]. 振动与冲击. 2018, 37(23): 171-179.

【19】Pan X L, Yang Z J, Xu Y T, et al. Safe screening rules for accelerating twin support vector machine classification [J]. IEEE Transactions on Neural Networks and Learning Systems. 2018, 29(5): 1876-1887.

【20】Chen Y, Liu Z Q, Liu H L. A method of fiber Bragg grating sensing signal de-noise based on compressive sensing [J]. IEEE Access. 2018, 6: 28318-28327.

【21】Geng R, Wang X J, Ye N, et al. A fault prediction algorithm based on rough sets and back propagation neural network for vehicular networks [J]. IEEE Access. 2018, 6: 74984-74992.

引用该论文

Chen Yong,Chen Yawu,Liu Zhiqiang,Liu Huanlin. A Gear Fault Detection Method Based on a Fiber Bragg Grating Sensor[J]. Chinese Journal of Lasers, 2020, 47(3): 0304007

陈勇,陈亚武,刘志强,刘焕淋. 基于光纤布拉格光栅传感的齿轮故障检测方法[J]. 中国激光, 2020, 47(3): 0304007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF