Opto-Electronic Advances, 2020, 3 (6): 06190038, Published Online: Aug. 11, 2020  

Printing photovoltaics by electrospray

Author Affiliations
1 Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
2 Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
Abstract
Solution processible photovoltaics (PV) are poised to play an important role in scalable manufacturing of low-cost solar cells. Electrospray is uniquely suited for fabricating PVs due to its several desirable characteristics of an ideal manufacturing process such as compatibility with roll-to-roll production processes, tunability and uniformity of droplet size, capability of operating at atmospheric pressure, and negligible material waste and nano structures. This review begins with an introduction of the fundamentals and unique properties of electrospray. We put emphasis on the evaporation time and residence time that jointly affect the deposition outcome. Then we review the efforts of electrospray printing polymer solar cells, perovskite solar cells, and dye sensitized solar cells. Collectively, these results demonstrate the advantages of electrospray for solution processed PV. Electrospray has also exhibited the capability of producing uniform films as well as nanostructured and even multiscale films. So far, the electrospray has been found to improve active layer morphology, and create devices with efficiencies comparable with that of spin-coating. Finally, we discuss challenges and research opportunities that enable electrospray to become a mainstream technique for industrial scale production.

Xinyan Zhao, Weiwei Deng. Printing photovoltaics by electrospray[J]. Opto-Electronic Advances, 2020, 3(6): 06190038.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!