首页 > 论文 > 光学学报 > 41卷 > 1期(pp:0114003-9)

飞秒激光制备超疏水表面的研究进展

Recent Advances in Femtosecond Laser-Induced Superhydrophobic Surfaces

白雪   陈烽  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

超疏水表面由于具有广阔的应用前景而引起了研究者的关注。与传统的微纳加工方法相比,飞秒激光技术具有加工材料广、加工精度高和可控性强等优势,目前已成为制备超疏水表面的一种有效途径。本文介绍了飞秒激光微纳加工的特点以及润湿性的理论基础,总结了近些年来采用飞秒激光技术在不同材料表面构筑超疏水表面的研究进展,并对其应用进行了介绍,最后探讨了目前该领域存在的问题及未来的发展方向。

Abstract

Superhydrophobic surfaces have aroused tremendous attention due to their broad promising applications. Compared with the traditional micro/nanofabrication, femtosecond laser microfabrication has become an effective tool for fabricating surperhydrophobic surfaces owing to the advantages of ablating a wide variety of materials, high processing precision, strong controllability, etc. In this review, we introduced the features of femtosecond laser microfabrication and the theoretical basis of wettability. Then, the research progress of different femtosecond laser-induced superhydrophobic surfaces and the related applications were summarized. Finally, the existing problems and future prospects in this field were discussed.

广告组5 - 光束分析仪
补充资料

中图分类号:T-19

DOI:10.3788/AOS202141.0114003

所属栏目:激光器与激光光学

基金项目:国家重点研发计划、国家自然科学基金、中央高校基本科研业务费专项资金(61875158)

收稿日期:2020-08-12

修改稿日期:2020-09-18

网络出版日期:2021-01-01

作者单位    点击查看

白雪:西安交通大学电子科学与工程学院, 陕西 西安 710049
陈烽:西安交通大学电子科学与工程学院, 陕西 西安 710049

联系人作者:陈烽(chengfeng@mail.xjtu.edu.cn)

【1】Liu M J, Wang S T, Jiang L. Nature-inspired superwettability systems [J]. Nature Reviews Materials. 2017, 2(7): 17036.Liu M J, Wang S T, Jiang L. Nature-inspired superwettability systems [J]. Nature Reviews Materials. 2017, 2(7): 17036.

【2】Wang S T, Liu K S, Yao X, et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications [J]. Chemical Reviews. 2015, 115(16): 8230-8293.

【3】Yong J L, Chen F, Yang Q, et al. Superoleophobic surfaces [J]. Chemical Society Reviews. 2017, 46(14): 4168-4217.

【4】Wang J N, Liu Y Q, Zhang Y L, et al. Wearable superhydrophobic elastomer skin with switchable wettability [J]. Advanced Functional Materials. 2018, 28(23): 1800625.

【5】Li S H, Page K, Sathasivam S, et al. Efficiently texturing hierarchical superhydrophobic fluoride-free translucent films by AACVD with excellent durability and self-cleaning ability [J]. Journal of Materials Chemistry A. 2018, 6(36): 17633-17641.

【6】Li S H, Huang J Y, Chen Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications [J]. Journal of Materials Chemistry A. 2017, 5(1): 31-55.Li S H, Huang J Y, Chen Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications [J]. Journal of Materials Chemistry A. 2017, 5(1): 31-55.

【7】Das S, Kumar S, Samal S K, et al. A review on superhydrophobic polymer nanocoatings: recent development and applications [J]. Industrial & Engineering Chemistry Research. 2018, 57(8): 2727-2745.Das S, Kumar S, Samal S K, et al. A review on superhydrophobic polymer nanocoatings: recent development and applications [J]. Industrial & Engineering Chemistry Research. 2018, 57(8): 2727-2745.

【8】Geyer F, D''Acunzi M, Sharifi-Aghili A, et al. 6(3): eaaw9727 [J]. how self-cleaning of superhydrophobic surfaces works. Science Advances. 2020.

【9】Dong X L, Gao S W, Huang J Y, et al. A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced self-healing and versatile oil-water separation ability [J]. Journal of Materials Chemistry A. 2019, 7(5): 2122-2128.Dong X L, Gao S W, Huang J Y, et al. A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced self-healing and versatile oil-water separation ability [J]. Journal of Materials Chemistry A. 2019, 7(5): 2122-2128.

【10】Li Z, Cao M Y, Li P, et al. Surface-embedding of functional micro-/nanoparticles for achieving versatile superhydrophobic interfaces [J]. Matter. 2019, 1(3): 661-673.Li Z, Cao M Y, Li P, et al. Surface-embedding of functional micro-/nanoparticles for achieving versatile superhydrophobic interfaces [J]. Matter. 2019, 1(3): 661-673.

【11】Meng J X, Zhang P C, Wang S T. Recent progress of abrasion-resistant materials: learning from nature [J]. Chemical Society Reviews. 2016, 45(2): 237-251.

【12】Si Y F, Dong Z C, Jiang L. Bioinspired designs of superhydrophobic and superhydrophilic materials [J]. ACS Central Science. 2018, 4(9): 1102-1112.Si Y F, Dong Z C, Jiang L. Bioinspired designs of superhydrophobic and superhydrophilic materials [J]. ACS Central Science. 2018, 4(9): 1102-1112.

【13】Tian X, Verho T. Ras R H A. Moving superhydrophobic surfaces toward real-world applications [J]. Science. 2016, 352(6282): 142-143.Tian X, Verho T. Ras R H A. Moving superhydrophobic surfaces toward real-world applications [J]. Science. 2016, 352(6282): 142-143.

【14】Peng C Y, Chen Z Y, Tiwari M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance [J]. Nature Materials. 2018, 17(4): 355-360.

【15】Hooda A, Goyat M S, Pandey J K, et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings [J]. Progress in Organic Coatings. 2020, 142: 105557.Hooda A, Goyat M S, Pandey J K, et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings [J]. Progress in Organic Coatings. 2020, 142: 105557.

【16】Sahoo B N, Kandasubramanian B. Recent progress in fabrication and characterisation of hierarchical biomimetic superhydrophobic structures [J]. RSC Advances. 2014, 4(42): 22053-22093.

【17】Sun Y H, Guo Z G. Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature [J]. Nanoscale Horizons. 2019, 4(1): 52-76.

【18】Chen F, Zhang D S, Yang Q, et al. Bioinspired wetting surface via laser microfabrication [J]. ACS Applied Materials & Interfaces. 2013, 5(15): 6777-6792.Chen F, Zhang D S, Yang Q, et al. Bioinspired wetting surface via laser microfabrication [J]. ACS Applied Materials & Interfaces. 2013, 5(15): 6777-6792.

【19】Yong J L, Chen F, Yang Q, et al. A review of femtosecond-laser-induced underwater superoleophobic surfaces [J]. Advanced Materials Interfaces. 2018, 5(7): 1701370.

【20】Yong J L, Chen F, Yang Q, et al. Femtosecond laser controlled wettability of solid surfaces [J]. Soft Matter. 2015, 11(46): 8897-8906.Yong J L, Chen F, Yang Q, et al. Femtosecond laser controlled wettability of solid surfaces [J]. Soft Matter. 2015, 11(46): 8897-8906.

【21】Wu H, Jiao Y L, Zhang C C, et al. Large area metal micro-/nano-groove arrays with both structural color and anisotropic wetting fabricated by one-step focused laser interference lithography [J]. Nanoscale. 2019, 11(11): 4803-4810.Wu H, Jiao Y L, Zhang C C, et al. Large area metal micro-/nano-groove arrays with both structural color and anisotropic wetting fabricated by one-step focused laser interference lithography [J]. Nanoscale. 2019, 11(11): 4803-4810.

【22】Zhu S, Li J, Cai S, et al. Unidirectional transport and effective collection of underwater CO2 bubbles utilizing ultrafast-laser-ablated Janus foam [J]. ACS Applied Materials & Interfaces. 2020, 12(15): 18110-18115.Zhu S, Li J, Cai S, et al. Unidirectional transport and effective collection of underwater CO2 bubbles utilizing ultrafast-laser-ablated Janus foam [J]. ACS Applied Materials & Interfaces. 2020, 12(15): 18110-18115.

【23】Lv X, Jiao Y L, Wu S Z, et al. Anisotropic sliding of underwater bubbles on microgrooved slippery surfaces by one-step femtosecond laser scanning [J]. ACS Applied Materials & Interfaces. 2019, 11(22): 20574-20580.

【24】Zhang Y L, Tian Y, Wang H, et al. Dual-3D femtosecond laser nanofabrication enables dynamic actuation [J]. ACS Nano. 2019, 13(4): 4041-4048.

【25】Yong J L, Chen F, Yang Q, et al. Bioinspired transparent underwater superoleophobic and anti-oil surfaces [J]. Journal of Materials Chemistry A. 2015, 3(18): 9379-9384.

【26】Yong J, Singh S C, Zhan Z, et al. How to obtain six different superwettabilities on a same microstructured pattern: relationship between various superwettabilities in different solid/liquid/gas systems [J]. Langmuir. 2019, 35(4): 921-927.

【27】Jiang L, Wang A D, Li B, et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application [J]. Light: Science & Applications. 2018, 7(2): 17134.

【28】Zhang D S, Chen F, Yang Q, et al. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser [J]. ACS Applied Materials & Interfaces. 2012, 4(9): 4905-4912.Zhang D S, Chen F, Yang Q, et al. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser [J]. ACS Applied Materials & Interfaces. 2012, 4(9): 4905-4912.

【29】Tan D Z, Sharafudeen K N, Yue Y Z, et al. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications [J]. Progress in Materials Science. 2016, 76: 154-228.Tan D Z, Sharafudeen K N, Yue Y Z, et al. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications [J]. Progress in Materials Science. 2016, 76: 154-228.

【30】Yong J L, Yang Q, Chen F, et al. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser [J]. Applied Physics A. 2013, 111(1): 243-249.Yong J L, Yang Q, Chen F, et al. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser [J]. Applied Physics A. 2013, 111(1): 243-249.

【31】Yong J L, Chen F, Li M J, et al. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces [J]. Journal of Materials Chemistry A. 2017, 5(48): 25249-25257.

【32】Yu S, Guo Z G, Liu W M. Biomimetic transparent and superhydrophobic coatings: from nature and beyond nature [J]. Chemical Communications. 2015, 51(10): 1775-1794.

【33】Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Industrial & Engineering Chemistry. 1936, 28(8): 988-994.Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Industrial & Engineering Chemistry. 1936, 28(8): 988-994.

【34】Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Transactions of the Faraday Society. 1944, 40: 546-551.Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Transactions of the Faraday Society. 1944, 40: 546-551.

【35】Baldacchini T, Carey J E, Zhou M, et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser [J]. Langmuir. 2006, 22(11): 4917-4919.Baldacchini T, Carey J E, Zhou M, et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser [J]. Langmuir. 2006, 22(11): 4917-4919.

【36】Zorba V, Stratakis E, Barberoglou M, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf [J]. Advanced Materials. 2008, 20(21): 4049-4054.

【37】Kietzig A M, Hatzikiriakos S G, Englezos P. Patterned superhydrophobic metallic surfaces [J]. Langmuir. 2009, 25(8): 4821-4827.Kietzig A M, Hatzikiriakos S G, Englezos P. Patterned superhydrophobic metallic surfaces [J]. Langmuir. 2009, 25(8): 4821-4827.

【38】Vorobyev A Y, Guo C L. Multifunctional surfaces produced by femtosecond laser pulses [J]. Journal of Applied Physics. 2015, 117(3): 033103.

【39】Wu B, Zhou M, Li J, et al. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser [J]. Applied Surface Science. 2009, 256(1): 61-66.

【40】Long J Y, Fan P X, Gong D W, et al. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal [J]. ACS Applied Materials & Interfaces. 2015, 7(18): 9858-9865.Long J Y, Fan P X, Gong D W, et al. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal [J]. ACS Applied Materials & Interfaces. 2015, 7(18): 9858-9865.

【41】Yong J L, Chen F, Yang Q, et al. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability [J]. Chemical Communications. 2015, 51(48): 9813-9816.Yong J L, Chen F, Yang Q, et al. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability [J]. Chemical Communications. 2015, 51(48): 9813-9816.

【42】Yong J L, Chen F, Yang Q, et al. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays [J]. Langmuir. 2013, 29(10): 3274-3279.Yong J L, Chen F, Yang Q, et al. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays [J]. Langmuir. 2013, 29(10): 3274-3279.

【43】Yong J L, Yang Q, Chen F, et al. Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion [J]. Applied Surface Science. 2014, 288: 579-583.Yong J L, Yang Q, Chen F, et al. Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion [J]. Applied Surface Science. 2014, 288: 579-583.

【44】Yong J L, Chen F, Yang Q, et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion [J]. The Journal of Physical Chemistry C. 2013, 117(47): 24907-24912.Yong J L, Chen F, Yang Q, et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion [J]. The Journal of Physical Chemistry C. 2013, 117(47): 24907-24912.

【45】Yong J L, Yang Q, Chen F, et al. Bioinspired superhydrophobic surfaces with directional Adhesion [J]. RSC Advances. 2014, 4(16): 8138-8143.Yong J L, Yang Q, Chen F, et al. Bioinspired superhydrophobic surfaces with directional Adhesion [J]. RSC Advances. 2014, 4(16): 8138-8143.

【46】Yong J L, Yang Q, Chen F, et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces [J]. Journal of Materials Chemistry A. 2014, 2(15): 5499-5507.Yong J L, Yang Q, Chen F, et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces [J]. Journal of Materials Chemistry A. 2014, 2(15): 5499-5507.

【47】Xu Z, Wang L, Yu C M, et al. In situ separation of chemical reaction systems based on a special wettable PTFE membrane [J]. Advanced Functional Materials. 2018, 28(5): 1703970.Xu Z, Wang L, Yu C M, et al. In situ separation of chemical reaction systems based on a special wettable PTFE membrane [J]. Advanced Functional Materials. 2018, 28(5): 1703970.

【48】Yong J L, Fang Y, Chen F, et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: separating oil from water and corrosive solutions [J]. Applied Surface Science. 2016, 389: 1148-1155.

【49】Fang Y, Yong J L, Chen F, et al. Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications [J]. Applied Physics A. 2016, 122(9): 827.

【50】Xi M, Yong J L, Chen F, et al. A femtosecond laser-induced superhygrophobic surface: beyond superhydrophobicity and repelling various complex liquids [J]. RSC Advances. 2019, 9(12): 6650-6657.

【51】Zhang F H, Xia Y L, Liu Y J, et al. Nano/microstructures of shape memory polymers: from materials to applications [J]. Nanoscale Horizons. 2020, 5(8): 1155-1173.Zhang F H, Xia Y L, Liu Y J, et al. Nano/microstructures of shape memory polymers: from materials to applications [J]. Nanoscale Horizons. 2020, 5(8): 1155-1173.

【52】Gao H, Li J R, Zhang F H, et al. The research status and challenges of shape memory polymer-based flexible electronics [J]. Materials Horizons. 2019, 6(5): 931-944.Gao H, Li J R, Zhang F H, et al. The research status and challenges of shape memory polymer-based flexible electronics [J]. Materials Horizons. 2019, 6(5): 931-944.

【53】Zhao Q, Qi H J, enabling materials. mechanistic understanding. Progress in Polymer Science[J]. 2015, 49/50: 79-120.

【54】Bai X, Yang Q, Fang Y, et al. Superhydrophobicity-memory surfaces prepared by a femtosecond laser [J]. Chemical Engineering Journal. 2020, 383: 123143.Bai X, Yang Q, Fang Y, et al. Superhydrophobicity-memory surfaces prepared by a femtosecond laser [J]. Chemical Engineering Journal. 2020, 383: 123143.

【55】Bai X, Yang Q, Fang Y, et al. Anisotropic, adhesion-switchable, and thermal-responsive superhydrophobicity on the femtosecond laser-structured shape-memory polymer for droplet manipulation [J]. Chemical Engineering Journal. 2020, 400: 125930.Bai X, Yang Q, Fang Y, et al. Anisotropic, adhesion-switchable, and thermal-responsive superhydrophobicity on the femtosecond laser-structured shape-memory polymer for droplet manipulation [J]. Chemical Engineering Journal. 2020, 400: 125930.

【56】Zhou M, Yang H F, Li B J, et al. Forming mechanisms and wettability of double-scale structures fabricated by femtosecond laser [J]. Applied Physics A. 2009, 94(3): 571-576.Zhou M, Yang H F, Li B J, et al. Forming mechanisms and wettability of double-scale structures fabricated by femtosecond laser [J]. Applied Physics A. 2009, 94(3): 571-576.

【57】Ahsan M S, Dewanda F, Lee M S, et al. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses [J]. Applied Surface Science. 2013, 265: 784-789.

【58】Lin Y, Han J P, Cai M Y, et al. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability [J]. Journal of Materials Chemistry A. 2018, 6(19): 9049-9056.Lin Y, Han J P, Cai M Y, et al. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability [J]. Journal of Materials Chemistry A. 2018, 6(19): 9049-9056.

【59】Chu D K, Singh S C, Yong J L, et al. Superamphiphobic surfaces with controllable adhesion fabricated by femtosecond laser Bessel beam on PTFE [J]. Advanced Materials Interfaces. 2019, 6(14): 1900550.Chu D K, Singh S C, Yong J L, et al. Superamphiphobic surfaces with controllable adhesion fabricated by femtosecond laser Bessel beam on PTFE [J]. Advanced Materials Interfaces. 2019, 6(14): 1900550.

【60】Li G Q, Fan H, Ren F F, et al. Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration [J]. Journal of Materials Chemistry A. 2016, 4(48): 18832-18840.Li G Q, Fan H, Ren F F, et al. Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration [J]. Journal of Materials Chemistry A. 2016, 4(48): 18832-18840.

【61】Wang A D, Jiang L, Li X W, et al. Low-adhesive superhydrophobic surface-enhanced Raman spectroscopy substrate fabricated by femtosecond laser ablation for ultratrace molecular detection [J]. Journal of Materials Chemistry B. 2017, 5(4): 777-784.

【62】Sarbada S, Shin Y C. Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser [J]. Applied Surface Science. 2017, 405: 465-475.

【63】Yong J L, Yang Q, Chen F, et al. A bioinspired planar superhydrophobic microboat [J]. Journal of Micromechanics and Microengineering. 2014, 24(3): 035006.Yong J L, Yang Q, Chen F, et al. A bioinspired planar superhydrophobic microboat [J]. Journal of Micromechanics and Microengineering. 2014, 24(3): 035006.

【64】Zhan Z B. ElKabbash M, Cheng J L, et al. Highly floatable superhydrophobic metallic assembly for aquatic applications [J]. ACS Applied Materials & Interfaces. 2019, 11(51): 48512-48517.

引用该论文

Bai Xue,Chen Feng. Recent Advances in Femtosecond Laser-Induced Superhydrophobic Surfaces[J]. Acta Optica Sinica, 2021, 41(1): 0114003

白雪,陈烽. 飞秒激光制备超疏水表面的研究进展[J]. 光学学报, 2021, 41(1): 0114003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF