首页 > 论文 > 光学学报 > 39卷 > 6期(pp:606003--1)

基于25G级光器件的50 Gbit/s NRZ IM-DD下行传输系统

50 Gbit/s NRZ IM-DD Downstream Transmission System Based on 25G-Class Optical Components

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

4阶脉冲幅度调制信号对光电器件的线性度要求较高,色散容限较小;10G级光器件的带宽限制严重影响系统性能。描述了采用商用25G级光器件实现50 Gbit/s 非归零码(NRZ)信号的传输实验方案。分别在背靠背和25 km标准单模光纤传输情况下,使用最大似然序列估计和基于最小均方误差算法的判决反馈均衡进行译码。通过比较不同接收光功率条件下的误码率性能,证明了基于25G级光器件的50 Gbit/s NRZ信号传输能够作为单路50 Gbit/s的候选方案。

Abstract

The fourth-order pulse amplitude modulation signal requires high linearity and a small dispersion tolerance in an optoelectronic device. The bandwidth limitation of the 10G-class optics device severely degrades system performance. This study describes a 50 Gbit/s non-return zero (NRZ) signal transmission scheme using commercial 25G-class optical components. Herein, for a back-to-back and 25-km standard single-mode fiber transmission, the maximum likelihood sequence estimation and decision feedback equalization based on the least mean square algorithm are used for decoding. A comparison of the bit error rate performances under different received optical power conditions proves that the 50 Gbit/s NRZ signal transmission based on the 25G-class optics device can act as a single-wavelength 50 Gbit/s candidate solution.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.0606003

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金、上海市科委资助;

收稿日期:2019-01-03

修改稿日期:2019-03-21

网络出版日期:2019-06-17

作者单位    点击查看

陈炜:上海市先进通信与数据科学研究院, 上海 200444上海大学特种光纤与光接入网重点实验室, 上海 200444
宋英雄:上海市先进通信与数据科学研究院, 上海 200444上海大学特种光纤与光接入网重点实验室, 上海 200444
李正璇:上海市先进通信与数据科学研究院, 上海 200444上海大学特种光纤与光接入网重点实验室, 上海 200444
李程程:上海市先进通信与数据科学研究院, 上海 200444上海大学特种光纤与光接入网重点实验室, 上海 200444
陈健:上海市先进通信与数据科学研究院, 上海 200444上海大学特种光纤与光接入网重点实验室, 上海 200444
李迎春:上海市先进通信与数据科学研究院, 上海 200444上海大学特种光纤与光接入网重点实验室, 上海 200444

联系人作者:陈炜(davidchan@shu.edu.cn); 陈健( chenjian@shu.edu.cn);

备注:国家自然科学基金、上海市科委资助;

【1】Houtsma V, van Veen D and Harstead E. Recent progress on standardization of next-generation 25, 50, and 100G EPON. Journal of Lightwave Technology. 35(6), 1228-1234(2017).

【2】Li S P, Ye Z C and Cheng N. et al. Demonstration of a real-time 25-Gb/s TDM-PON system with 25-Gb/s downstream based on optical duobinary and 10-Gb/s burst-mode upstream based on NRZ. [C]//Optical Fiber Communications Conference and Exhibition (OFC), March 20-22, 2016, Anaheim, California United States. Washington D. C.: OSA. Th1l, (2016).

【3】Houtsma V and van Veen D. Demonstration of symmetrical 25 Gbps TDM-PON with 31.5 dB optical power budget using only 10 Gbps optical components. [C]//2015 European Conference on Optical Communication (ECOC), September 27- October 1, 2015, Valencia, Spain. New York: IEEE. 7341691, (2015).

【4】Wang J, Cao Z Z, Zhou H et al. A wavelength division multiplexing radio-over-fiber system with 58 GHz optical orthogonal frequency division multiplexing millimeter-wave signal. Acta Optica Sinica. 30(5), 1274-1278(2010).
王晶, 曹子峥, 周慧 等. 承载正交频分复用信号的58 GHz光载毫米波波分复用光纤无线通信系统. 光学学报. 30(5), 1274-1278(2010).

【5】Xiao G L, Xu J L, Yang H Y et al. A plasmon multi-channel wavelength-division multiplexer constructed with a nanodisk structure embedded in a rectangular metal block. Acta Optica Sinica. 38(12), (2018).
肖功利, 徐俊林, 杨宏艳 等. 内嵌矩形金属块纳米圆盘结构等离子体多通道波分复用器研究. 光学学报. 38(12), (2018).

【6】Zhang P, Tian C L, Qiao Y et al. Four wave mixing effect on simulated Raman scattering in single mode fiber. Laser & Optoelectronics Progress. 55(6), (2018).
张鹏, 田春林, 乔勇 等. 单模光纤中四波混频对受激拉曼散射影响的研究. 激光与光电子学进展. 55(6), (2018).

【7】Zhang Q Q, Zhang P, Lu J et al. Joint phase noise compensation algorithm using RF-pilot and extended Kalman filter in CO-OFDM systems. Acta Optica Sinica. 38(9), (2018).
章青青, 张平, 卢瑾 等. 相干光正交频分复用系统中射频导频和扩展卡尔曼滤波联合的相位噪声补偿算法. 光学学报. 38(9), (2018).

【8】Zhou Z L, Zhan Y J, Cai Q L et al. Algorithm for low-computational-complexity carrier-phase estimation in optical communication systems. Acta Optica Sinica. 38(12), (2018).
周志立, 詹宜巨, 蔡庆玲 等. 光通信系统中低计算复杂度的载波相位估计方法. 光学学报. 38(12), (2018).

【9】Chen C, Tang X F and Zhang Z H. Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation. [C]//Optical Fiber Communication Conference 2015, March 22-26, 2015, Los Angeles, California United States. Washington D. C.: OSA. Th4A, (2015).

【10】Wei J L, Eiselt N, Griesser H et al. First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10-G transmitter for next generation access applications. [C]//2015 European Conference on Optical Communication (ECOC), September 27- October 1, 2015, Valencia, Spain. New York: IEEE. 7341692, (2015).

【11】Tao M H, Zhou L and Zeng H Y. et al. 50-Gb/s/λ TDM-PON based on 10G DML and 10G APD supporting PR10 link loss budget after 20-km downstream transmission in the O-band. [C]//Optical Fiber Communication Conference 2017, March 19-23, 2017, Los Angeles, California United States. Washington D. C.: OSA. Tu3G, (2017).

【12】Guo Y, Yin Y J and Song Y X. et al. Demonstration of 25 Gbit/s per channel NRZ transmission with 35 dB power budget using 25G Ge/Si APD for next generation 100G-PON. [C]//Optical Fiber Communications Conference and Exhibition 2017, March 19-23, 2017, Los Angeles, California United States. Washington D. C.: OSA. M3H, (2017).

【13】Xia J Q, Li Z X, Li Y C et al. Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON. Optics Communications. 410, 328-332(2018).

【14】Chen W, Song Y X, Li Z X et al. Experimental study of 50 Gb/s PAM4 transmission based on 25 GHz optical components. Optical Communication Technology. 42(12), 35-38(2018).
陈炜, 宋英雄, 李正璇 等. 基于25 GHz光器件的50 Gb/s PAM4传输实验研究. 光通信技术. 42(12), 35-38(2018).

【15】Hu S H, Yi X W, Zhang J et al. Volterra equalization of complex modulation utilizing frequency chirp in directly modulated lasers. Optics Communications. 409, 99-104(2018).

【16】Tang X Z, Zhou J and Guo M Q. et al. An efficient nonlinear equalizer for 40-Gb/s PAM4-PON systems. [C]//Optical Fiber Communications Conference 2018, March 11-15, 2018, San Diego, California United States. Washington D. C.: OSA. W2A, (2018).

【17】Giacoumidis E, Matin A, Wei J L et al. Blind nonlinearity equalization by machine-learning-based clustering for single- and multichannel coherent optical OFDM. Journal of Lightwave Technology. 36(3), 721-727(2018).

【18】Li P X, Yi L L, Xue L et al. 56 Gbps IM/DD PON based on 10G-class optical devices with 29 dB loss budget enabled by machine learning. [C]//Optical Fiber Communications Conference 2018, March 11-15, 2018, San Diego, California United States. Washington D. C.: OSA. M2B, (2018).

【19】Houtsma V and van Veen D. Bi-directional 25G/50G TDM-PON with extended power budget using 25G APD and coherent detection. Journal of Lightwave Technology. 122-127(2017).

【20】Zhang J W, Wey J S and Yu J J. et al. Symmetrical 50-Gb/s/λ PAM-4 TDM-PON in O-band with DSP and semiconductor optical amplifier supporting PR-30 link loss budget. [C]//Optical Fiber Communication Conference 2018, March 11-15, 2018, San Diego, California United States. Washington D. C.: OSA. M1B, (2018).

【21】Harstead E. 25 G based PON technology. [C]//2018 Optical Fiber Communications Conference and Exposition (OFC), March 11-15, San Diego, CA, USA. New York: IEEE. 17856139, (2018).

【22】Xia J Q, Li Y C, Xu T T et al. Timing recovery algorithm selection for duo-binary signal used in next generation 25G-EPON. IEEE Photonics Journal. 9(4), (2017).

【23】Oerder M and Meyr H. Digital filter and square timing recovery. IEEE Transactions on Communications. 36(5), 605-612(1988).

引用该论文

Wei Chen,Yingxiong Song,Zhengxuan Li,Chengcheng Li,Jian Chen,Yingchun Li. 50 Gbit/s NRZ IM-DD Downstream Transmission System Based on 25G-Class Optical Components[J]. Acta Optica Sinica, 2019, 39(6): 0606003

陈炜,宋英雄,李正璇,李程程,陈健,李迎春. 基于25G级光器件的50 Gbit/s NRZ IM-DD下行传输系统[J]. 光学学报, 2019, 39(6): 0606003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF