首页 > 论文 > 激光与光电子学进展 > 56卷 > 13期(pp:131004--1)

基于概率协作表示的多表情序列融合识别

Multi-Expression Sequence Fusion Recognition Based on Probabilistic Cooperative Representation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

传统表情识别往往是基于单一图像进行特征提取、训练及识别,缺乏在动态时间上的细微表情变化提取。利用时间前后的人脸表情变化信息,提出了一种基于概率协作表示的多视频序列融合表情识别方法。先采用主动外观模型(AAM)定位出人脸表情的68个特征点,利用提出的融合策略将相邻3帧表情图像的AAM特征进行融合,最后利用概率协作表示的分类优势进行识别。实验结果表明,在CK+表情数据库上,所提出的方法能够把握表情的时间变化信息,相比于近几年的表情识别算法,在识别率上取得了较好的效果。

Abstract

Traditional facial expression recognition often uses a single image to extract features, train, and recognize; however, subtle changes in dynamic facial expressions are not recognized. This study proposes a multi-expression sequence fusion recognition method based on probabilistic cooperative representation using the changes in facial expression before and after time. First, 68 feature points of facial expression are located using an active appearance model (AAM). Then, the AAM features of three adjacent facial expressions are combined using the the proposed method. Finally, the classification advantages of probabilistic cooperative representation are used for recognition. Experimental results indicate that the proposed method can grasp the temporal change information of expression on the CK+ expression database. Moreover, this method can achieve higher recognition rates compared with traditional expression recognition algorithms.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

DOI:10.3788/LOP56.131004

所属栏目:图像处理

基金项目:安徽省高校优秀青年骨干人才项目、安徽省自然科学基金、阜阳市政府-阜阳师范学院横向合作科研项目、安徽省教育厅自然科学研究重点项目、阜阳师范学院青年人才基金重点项目;

收稿日期:2018-12-21

修改稿日期:2019-01-24

网络出版日期:2019-07-01

作者单位    点击查看

王秀友:阜阳师范学院计算机与信息工程学院, 安徽 阜阳 236037安徽大学计算机科学与技术学院, 安徽 合肥 230601
范建中:阜阳师范学院计算机与信息工程学院, 安徽 阜阳 236037
刘华明:阜阳师范学院计算机与信息工程学院, 安徽 阜阳 236037
徐冬青:阜阳师范学院计算机与信息工程学院, 安徽 阜阳 236037
刘争艳:阜阳师范学院计算机与信息工程学院, 安徽 阜阳 236037

联系人作者:王秀友(wangxiuyou@163.com)

备注:安徽省高校优秀青年骨干人才项目、安徽省自然科学基金、阜阳市政府-阜阳师范学院横向合作科研项目、安徽省教育厅自然科学研究重点项目、阜阳师范学院青年人才基金重点项目;

【1】Wang X H, Xia C, Hu M et al. Facial expression recognition based on the fusion of spatio-temporal features in video sequences. Journal of Electronics & Information Technology. 40(3), 626-632(2018).
王晓华, 夏晨, 胡敏 等. 融合时空特征的视频序列表情识别. 电子与信息学报. 40(3), 626-632(2018).

【2】He Z C, Zhao L Z and Chen C. Convolution neural network with multi-resolution feature fusion for facial expression recognition. Laser & Optoelectronics Progress. 55(7), (2018).
何志超, 赵龙章, 陈闯. 用于人脸表情识别的多分辨率特征融合卷积神经网络. 激光与光电子学进展. 55(7), (2018).

【3】Moeini A, Faez K, Moeini H et al. Facial expression recognition using dual dictionary learning. Journal of Visual Communication and Image Representation. 45, 20-33(2017).

【4】Silva Cruz E A, Jung C R and Esparza Franco C H. Facial expression recognition using temporal POEM features. Pattern Recognition Letters. 114, 13-21(2018).

【5】Ahmed F, Paul P P and Gavrilova M L. Evolutionary fusion of local texture patterns for facial expression recognition. [C]∥2015 IEEE International Conference on Image Processing (ICIP), September 27-30, 2015, Quebec City, QC, Canada. New York: IEEE. 1031-1035(2015).

【6】Zhou H L, Lam K M and He X J. Shape-appearance-correlated active appearance model. Pattern Recognition. 56, 88-99(2016).

【7】Zhu X X and Ramanan D. Face detection, pose estimation, and landmark localization in the wild. [C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), June 16-21, 2012, Providence, RI, USA. New York: IEEE. 2879-2886(2012).

【8】Zhou J, Zhang S E, Mei H Y et al. A method of facial expression recognition based on Gabor and NMF. Pattern Recognition and Image Analysis. 26(1), 119-124(2016).

【9】Jiang M X, Hu M, Wang X H et al. Dual-modal emotion recognition based on facial expression and body posture in video sequences. Laser & Optoelectronics Progress. 55(7), (2018).
姜明星, 胡敏, 王晓华 等. 视频序列中表情和姿态的双模态情感识别. 激光与光电子学进展. 55(7), (2018).

【10】Xu L F, Wang J Y, Cui J N et al. Dynamic expression recognition based on dynamic time warping and active appearance model. Journal of Electronics & Information Technology. 40(2), 338-345(2018).
许良凤, 王家勇, 崔婧楠 等. 基于动态时间规整和主动外观模型的动态表情识别. 电子与信息学报. 40(2), 338-345(2018).

【11】Farajzadeh N. Hashemzadeh M. Exemplar-based facial expression recognition. Information Sciences. 460/461, 318-330(2018).

【12】Siddiqi M H, Ali R, Khan A M et al. Human facial expression recognition using stepwise linear discriminant analysis and hidden conditional random fields. IEEE Transactions on Image Processing. 24(4), 1386-1398(2015).

【13】Zhang J G, Fang Y, Yuan H et al. Multiple convolutional neural networks for facial expression sequence recognition. Journal of Xidian University. 45(1), 150-155(2018).
张金刚, 方圆, 袁豪 等. 一种识别表情序列的卷积神经网络. 西安电子科技大学学报. 45(1), 150-155(2018).

【14】Wang L L, Liu J H and Fu X M. Facial expression recognition based on fusion of local features and deep belief network. Laser & Optoelectronics Progress. 55(1), (2018).
王琳琳, 刘敬浩, 付晓梅. 融合局部特征与深度置信网络的人脸表情识别. 激光与光电子学进展. 55(1), (2018).

【15】Zeng N Y, Zhang H, Song B Y et al. Facial expression recognition via learning deep sparse autoencoders. Neurocomputing. 273, 643-649(2018).

【16】Hu M, Zhang K K, Wang X H et al. Video facial expression recognition combined with sliding window dynamic time warping and CNN. Journal of Image and Graphics. 23(8), 1144-1153(2018).
胡敏, 张柯柯, 王晓华 等. 结合滑动窗口动态时间规整和CNN的视频人脸表情识别. 中国图象图形学报. 23(8), 1144-1153(2018).

【17】Kamarol S K A, Parkkinen J, Jaward M H et al. . Spatiotemporal feature extraction for facial expression recognition. IET Image Processing. 10(7), 534-541(2016).

【18】Cheon Y and Kim D. Natural facial expression recognition using differential-AAM and manifold learning. Pattern Recognition. 42(7), 1340-1350(2009).

【19】Yang M, Zhang L, Feng X C et al. Sparse representation based fisher discrimination dictionary learning for image classification. International Journal of Computer Vision. 109(3), 209-232(2014).

【20】Lai J and Jiang X D. Modular weighted global sparse representation for robust face recognition. IEEE Signal Processing Letters. 19(9), 571-574(2012).

【21】Wei D M and Zhou W D. Face recognition using collaborative representation with neighbors. Journal of Xidian University. 42(3), 115-121(2015).
魏冬梅, 周卫东. 近邻样本协作表示的人脸识别算法. 西安电子科技大学学报. 42(3), 115-121(2015).

【22】Cai S J, Zhang L, Zuo W M et al. A probabilistic collaborative representation based approach for pattern classification. [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE. 2950-2959(2016).

【23】Hu M, Teng W D, Wang X H et al. Facial expression recognition based on local texture and shape features. Journal of Electronics & Information Technology. 40(6), 1338-1344(2018).
胡敏, 滕文娣, 王晓华 等. 融合局部纹理和形状特征的人脸表情识别. 电子与信息学报. 40(6), 1338-1344(2018).

【24】Huang Y, Yan Y, Chen S et al. Expression-targeted feature learning for effective facial expression recognition. Journal of Visual Communication and Image Representation. 55, 677-687(2018).

【25】Li Y Q, Li Y J, Li H B et al. Fusion of global and local various feature for facial expression recognition. Acta Optica Sinica. 34(5), (2014).
李雅倩, 李颖杰, 李海滨 等. 融合全局与局部多样性特征的人脸表情识别. 光学学报. 34(5), (2014).

【26】Wang Z, Ruan Q Q and An G Y. Facial expression recognition using sparse local fisher discriminant analysis. Neurocomputing. 174, 756-766(2016).

【27】Li Y Q, Wang S F, Zhao Y P et al. Simultaneous facial feature tracking and facial expression recognition. IEEE Transactions on Image Processing. 22(7), 2559-2573(2013).

【28】Fan X J, Yang X B, Ye Q L et al. A discriminative dynamic framework for facial expression recognition in video sequences. Journal of Visual Communication and Image Representation. 56, 182-187(2018).

引用该论文

Wang Xiuyou,Fan Jianzhong,Liu Huaming,Xu Dongqing,Liu Zhengyan. Multi-Expression Sequence Fusion Recognition Based on Probabilistic Cooperative Representation[J]. Laser & Optoelectronics Progress, 2019, 56(13): 131004

王秀友,范建中,刘华明,徐冬青,刘争艳. 基于概率协作表示的多表情序列融合识别[J]. 激光与光电子学进展, 2019, 56(13): 131004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF