首页 > 论文 > 红外与激光工程 > 49卷 > 12期(pp:20201058-20201058)

极低时间抖动的飞秒激光技术(特邀)

Ultra-low timing jitter femtosecond laser technology (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

飞秒激光器的时间抖动(或定时抖动)是指其输出脉冲的时域位置相对于理想周期信号的短期随机偏差。在毫秒量级的时间尺度上,飞秒激光器的脉冲序列具有严格的一致性,其定时抖动甚至低至阿秒量级。飞秒激光器的这种独特性质及其支持的前沿应用构成了“阿秒时间精度的超快光子学”这一全新的超快研究分支。文中回顾了近年来飞秒激光器定时抖动研究进展、高时间分辨率的定时抖动测量技术、以及不同类型的飞秒激光源能够达到的最低抖动水平。最后介绍了低抖动飞秒激光器在大科学装置同步、高速模数转换、绝对测距、相干脉冲合成等领域的应用。

Abstract

The time jitter of a femtosecond laser is the short-term deviation of the optical pulse position relative to its ideal equally spaced pulse position. Femtosecond lasers emit uniformly spaced ultrashort pulse train. The quantum-noise-limited timing jitter can be as low as few tens of attoseconds in millisecond time scale. This unique property and its advanced applications constitute a new branch of ultrafast research, "Attosecond precision ultrafast photonics". In this paper, the recent advances in femtosecond laser timing jitter research, high-precision timing jitter characterization methods, and the ultralow timing jitter that can be achieved by different kinds of femtosecond laser sources were reviewed. Finally, the application of low-jitter femtosecond lasers in the fields of synchronization of large-scale scientific instruments, high-speed analog-to-digital conversion, absolute ranging technology and coherent beam combination are introduced.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:TN248

DOI:10.3788/IRLA20201058

所属栏目:先进激光器技术

基金项目:国家自然科学基(61675150,61827821,61535009);区域光纤通信网与新型光通信系统国家重点实验室开放课题(2020GZKF011);天津市自然科学基金(18JCYBJC16900)

收稿日期:2020-09-18

修改稿日期:--

网络出版日期:2021-01-14

作者单位    点击查看

皮一涵:天津大学 精密仪器与光电子工程学院 光电信息技术教育部重点实验室,天津 300072
王春泽:天津大学 精密仪器与光电子工程学院 光电信息技术教育部重点实验室,天津 300072
宋有建:天津大学 精密仪器与光电子工程学院 光电信息技术教育部重点实验室,天津 300072
胡明列:天津大学 精密仪器与光电子工程学院 光电信息技术教育部重点实验室,天津 300072

联系人作者:宋有建(宋有建(1981-),副教授,博士生导师,博士,主要从事超短脉冲激光技术方面的研究。Email: yjsong@tju.edu)

备注:皮一涵(1998-),硕士生,主要从事飞秒激光技术及其应用方面的研究。Email: pp0525@tju.edu.cn

【1】H Zewail AhmedH Zewail Ahmed. Femtochemistry: atomic-scale dynamics of the chemical bond. The Journal of Physical Chemistry A. 104(24), 5660-5694(2000).

【2】Zhu Xin, L Kalcic Christine and Winkler Nelson. Applications of femtochemistry to proteomic and metabolomic analysis. The Journal of Physical Chemistry A. 114(38), 10380-10387(2010).

【3】Petek HrvojePetek Hrvoje. Single-molecule femtochemistry: molecular imaging at the space-time limit. Acs Nano. 8(1), 5-13(2014).

【4】Saalmann Ulf and Rost Jan-Michael. Ionization of clusters in intense laser pulses through collective electron dynamics. Physical Review Letters. 91(22), (2003).

【5】J Psikal, V T Tikhonchuk and J Limpouch. Ion acceleration by femtosecond laser pulses in small multispecies targets. Physics of Plasmas. 15(5), (2008).

【6】R Gattass Rafael and Mazur Eric. Femtosecond laser micromachining in transparent materials. Nature Photonics. 2(4), 219-225(2008).

【7】Khilo Anatol, J Spector Steven and E Grein Matthew. Photonic ADC: overcoming the bottleneck of electronic jitter. Optics Express. 20(4), 4454-4469(2012).

【8】S Schulz, I Grguras and C Behrens. Femtosecond all-optical synchronization of an X-ray free-electron laser. Nature Communication. 6, (2015).

【9】Walbran Matthew, Gliserin Alexander and Jung Kwangyun. 5-femtosecond laserelectron synchronization for pump-probe crystallography and diffraction. Physical Review Applied. 4, (2015).

【10】A Bartels, S A Diddams and C W Oates. Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references. Optics Letters. 30(6), 667-669(2005).

【11】J A Cox, W P Putnam and A Sell. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback. Optics Letters. 37(17), 3579-3581(2012).

【12】Ghelfi Paolo, Laghezza Francesco and Scotti Filippo. A fully photonics-based coherent radar system. Nature. 507, 341-345(2014).

【13】Xin Ming, ?afak Kemal and X K?rtner Franz. Ultra-precise timing and synchronization for large-scale scientific instruments. Optica. 5(12), 1564-1578(2018).

【14】J Kim and F X K?rtner. Attosecond-precision ultrafast photonics. Laser and Photonics Reviews. 4(3), 432-456(2010).

【15】Donald Barrett Sullivan, David W Allan, David A Howe, et al.. acterization of Clocks Oscillats [M]. US: Department of Commerce, National Institute of Stards Technology, 1990.

【16】Montress G K, Parker T E, Loboda M J. Residual phase noise measurements of VHF, UHF, microwave components [C]Proceedings of the 43rd Annual Symposium on IEEE, 1989, 41(5): 664679.

【17】vonder Linde Dvonder Linde D. Characterization of the noise in continuously operating mode-locked lasers. Applied Physics B. 39, 201-217(1986).

【18】Chunmei Ouyang, Ping Shum and Honghai Wang. Observation of timing jitter reduction induced by spectral filtering in a fiber laser mode locked with a carbon nanotube-based saturable absorber. Optics Letters. 35(14), 2320-2322(2010).

【19】Scott R P, Langrock C, Kolner B H. Highdynamicrange laser amplitude phase noise measurement techniques [C] IEEE Journal of ed Topics in Quantum Electronics, 2001, 7(4): 641655.

【20】Song Youjian, Kim Chur and Jung Kwangyun. Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime. Optics Express. 19(15), 14518-14525(2011).

【21】Shaofu Xu, Xiuting Zou and Bowen Ma. Deep-learning-powered photonic analog-to-digital conversion. Light: Science & Applications. 8, (2019).

【22】J Benedick Andrew, G Fujimoto James and X. Kartner Franz. Optical flywheels with attosecond jitter. Nature Photonics. 6(2), 97-100(2012).

【23】Qin Peng, Song Youjian and Kim Hyoji. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering. Optics Express. 22(23), 28276-28283(2014).

【24】Chen Wei, Song Youjian and Jung Kwangyun. Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser. Optics Express. 24(2), 1347-1357(2016).

【25】D Hou, C-C Lee and Z Yang. Timing jitter characterization of mode-locked lasers with <1 zs/√Hz resolution using a simple optical heterodyne technique. Optics Letters. 40(13), 2985-2988(2015).

【26】Keun Kim Tae, Song Youjian and Jung Kwangyun. Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers. Optics Letters. 36(22), 4443-4445(2011).

【27】Jung Kwangyun and Kim Jungwon. All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave. Scientific Reports. 5, (2015).

【28】Haochen Tian, Wenkai Yang and Kwon Dohyeon. Optical frequency comb noise spectra analysis using an asymmetric fiber delay line interferometer. Optics Express. 28(7), 9232-9243(2020).

【29】A Bartels, R Cerna and C Kistner. Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling. Review of Scientific Instruments. 78(3), (2007).

【30】Haosen Shi, Youjian Song and JiaHe Yu. Quantum-limited timing jitter characterization of mode-locked lasers by asynchronous optical sampling. Optics Express. 25(1), 10-19(2017).

【31】Duo Li, Demirbas Umit and Benedick Andrew. Attosecond timing jitter pulse trains from semiconductor saturable absorber mode-locked Cr:LiSAF lasers. Optics Express. 20(21), 23422-23435(2012).

【32】E Portuondo-Campa, R Paschotta and S Lecomte. Sub-100 attosecond timing jitter from low-noise passively mode-locked solid-state laser at telecom wavelength. Optics Letters. 38(15), 2650-2653(2013).

【33】Kim Jungwon, Chen Jeff and Cox Jonathan. Attosecond-resolution timing jitter characterization of free-running mode-locked lasers. Optics Letters. 32(24), 3519-3521(2007).

【34】N Kuse, J Jiang and C-C Lee. All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror. Optics Express. 24(3), 3095-3102(2016).

【35】Chen Jian, W Sickler Jason and Fendel Peter. Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication. Optics Letters. 33(9), 959-961(2008).

【36】Yang Heewon, Kim Hyoji and Shin Junho. Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser. Optics Letters. 39(1), 56-59(2014).

【37】Yan Wang, Haochen Tian and Yuxuan Ma. Timing jitter of high-repetition-rate mode-locked fiber lasers. Optics Letters. 43(18), 4382-4385(2018).

【38】Yan Wang, Haochen Tian and Dong Hou. Timing jitter reduction through relative intensity noise suppression in high-repetition-rate mode-locked fiber lasers. Optics Express. 27(8), 11273-11280(2019).

【39】Song Jiazheng, Wang Hushan and Huang Xinning. Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68 GHz fundamental repetition rate. Applied Optics. 58(7), 1733-1738(2019).

【40】Hou Lianping, Haji Mohsin and Akbar Jehan. Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers. Optics Letters. 36(6), 966-968(2011).

【41】Asghar Haroon, Wei Wei and Kumar Pramod. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback. Optics Express. 26(4), 4581-4592(2018).

【42】Songtao Liu, Komljenovic Tin and Srinivasan Sudharsanan. Characterization of a fully integrated heterogeneous silicon/III-V colliding pulse mode-locked laser with on-chip feedback. Optics Express. 26(8), 9714-9723(2018).

【43】Jeong Dongin, Kwon Dohyeon and Jeon Igju. Ultralow jitter silica microcomb. Optica. 7(9), 1108-1111(2020).

【44】M Pang, W He and X Jiang. All-optical bit storage in a fibre laser by optomechanically bound states of solitons. Nature Photonics. 10, 454-458(2016).

【45】Haosen Shi, Youjian Song and Chingyue Wang. Observation of subfemtosecond fluctuations of the pulse separation in a soliton molecule. Optics Letters. 43(7), 1623-1626(2018).

【46】Jungwon Kim and Youjian Song. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Advances in Optics and Photonics. 8(3), 465-540(2016).

【47】Chen Jian, W Sickler Jason and P Ippen Erich. High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser. Optics Letters. 32(11), 1566-1568(2007).

【48】Jian Chen, Jason Sickler, Hyunil Byun, et al. Fundamentally modelocked 3 GHz femtosecond erbium fiber laser [C] Ultrafast Phenomena XVI: Proceedings of the 16th International Conference, 2009: 732–734.

【49】Li Xing, Zou Weiwen, Wu Kan, et al., Timingjitter reduction by use of a spectral filter in a broadb femtosecond fiber laser [C]IEEE Photonics Technology Letters, 2010,27(8): 911914.

【50】Byun Hyunil, Y Sander Michelle and Motamedi Ali. Compact, stable 1 GHz femtosecond Er-doped fiber lasers. Applied Optics. 49(29), 5577-5582(2010).

【51】Kim Chur, Bae Sangho and Kieu Khanh. Sub-femtosecond timing jitter, all-fiber, CNT-mode-locked Er-laser at telecom wavelength. Optics Express. 21(22), 26533-26541(2013).

【52】Wu Kan, Zhang Xiaoyan and Wang Jun. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber. Optics Letters. 40(7), 1374-1377(2015).

【53】Jung Kwangyun and Kim Jungwon. Characterization of timing jitter spectra in free-running mode-locked lasers with 340 dB dynamic range over 10 decades of Fourier frequency. Optics Letters. 40(3), 316-319(2015).

【54】Shin Junho, Jung Kwangyun and Song Youjian. Characterization and analysis of timing jitter in normal-dispersion mode-locked Er-fiber lasers with intra-cavity filtering. Optics Express. 23(17), 22898-22906(2015).

【55】Kim Dohyun, Kwon Dohyeon and Lee Bongwan. Polarization-maintaining nonlinear-amplifying-loop-mirror mode-locked fiber laser based on a 3 × 3 coupler. Optics Letters. 44(5), 1068-1071(2019).

【56】Chengying Bao and Changxi Yang. Harmonic mode-locking in a Tm-doped fiber laser: characterization of its timing jitter and ultralong starting dynamics. Optics Communications. 356, 463-467(2015).

【57】Ahmet E Akosman, Michelle Y Ser. Low noise, modelocked 253 MHz TmHo fiber laser with ce pumping at 790 nm [C]IEEE Photonics Technology Letters, 2016, 28(17): 18781881.

【58】Huihui Cheng, Wenlong Wang and Yi Zhou. High-repetition-rate ultrafast fiber lasers. Optics Express. 26(13), 16411-16421(2018).

【59】Bagnell Kristina, Klee Anthony and J Delfyett Peter. Demonstration of a highly stable 10 GHz optical frequency comb with low timing jitter from a SCOWA-based harmonically mode-locked nested cavity laser. Optics Letters. 43(10), 2396-2399(2018).

【60】P Emma, R Akre and J Arthur. First lasing and operation of an ?ngstrom-wavelength free-electron laser. Nature Photonics. 4, 641-647(2010).

【61】M AltarelliM Altarelli. The European X-ray free-electron laser facility in Hamburg. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 269(24), 2845-2849(2011).

【62】J Milne. Thomas Schietinger Christopher and Aiba Masamitsu. The Swiss X-ray free electron laser. Applied Sciences. 7(7), (2017).

【63】Zhirong Huang and Lindau Ingolf. SACLA hard-X-ray compact FEL. Nature Photonics. 6, 505-506(2012).

【64】Zhentang Zhao, Dong Wang and Qiang Gu. SXFEL: a soft X-ray free electron laser in China. Synchrotron Radiation News. 3(6), 29-33(2017).

【65】Zhentang Zhao, Dong Wang and Lixin Yin. Shanghai soft X-ray freeelectron laser facility. Chinese Journal of Lasers. 46(1), (2019).

【66】Prat Eduard and Reiche Sven. Simple method to generate terawatt-attosecond X-ray free-electron-laser pulses. Physical Review Letters. 114(24), (2015).

【67】F Calegari, D Ayuso and A Trabattoni. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science. 346(6207), 336-339(2014).

【68】H ?str?m, H ?berg and H Xin. Probing the transition state region in catalytic CO oxidation on Ru. Science. 347(6225), 978-982(2015).

【69】?afak K, Cheng H P H, Dai A, et al. Singlemode fiber based pulsedoptical timing link with fewfemtosecond precision in SwissFEL [C]Conference on Lasers ElectroOptics, 2019: JTh2A.100.

【70】Xin Ming, ?afak Kemal and Y Peng Michael. One-femtosecond, long-term stable remote laser synchronization over a 3.5-km fiber link. Optics Express. 22(12), 14904-14912(2014).

【71】C Valley GeorgeC Valley George. Photonic analog-to-digital converters. Optics Express. 15(5), 1955-1982(2007).

【72】Kim Jungwon, J Park Matthew and H Perrott Michael. Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution. Optics Express. 16(21), 16509-16515(2008).

【73】Jin JonghanJin Jonghan. Dimensional metrology using the optical comb of a mode-locked laser. Measurement Science and Technology. 27(2), (2016).

【74】I Coddington, W C Swann and L Nenadovic. Rapid and precise absolute distance measurements at long range. Nature Photonics. 3, 351-356(2009).

【75】Hongyuan Zhang, Haoyun Wei and Xuejian Wu. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling. Optics Express. 22(6), 6597-6604(2014).

【76】Haosen Shi, Youjian Song and Fei Liang. Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers. Optics Express. 23(11), 14057-14069(2015).

【77】Yanxing Ma, Xiaolin Wang and Jinyong Leng. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique. Optics Letters. 36(6), 951-953(2011).

【78】Zejin Liu, Pengfei Ma and Rongtao Su. High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited]. Journal of the Optical Society of America B. 34(3), A7-A14(2017).

【79】K Shelton Robert, Ma Long-Sheng and C Kapteyn Henry. Phase-coherent optical pulse synthesis from separate femtosecond lasers. Science. 17, 1286-1289(2001).

【80】Manzoni Cristian, D Mücke Oliver and Cirmi Giovanni. Coherent pulse synthesis: towards sub‐cycle optical waveforms. Laser & Photonics Reviews. 9, 129-171(2012).

【81】J A Cox, W P Putnam and A Sell. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback. Optical Letters. 37(17), 3579-3581(2012).

【82】Haochen Tian, Youjian Song and Fei Meng. Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers. Optical Letters. 41(22), 5142-5145(2016).

【83】Aichen Ge, Bowen Liu and Wei Chen. Generation of few-cycle laser pulses by coherent synthesis based on a femtosecond Yb-doped fiber laser amplification system. Chinese Optics Letters. 17(4), (2019).

【84】P Trocha, M Karpov and D Ganin. Ultrafast optical ranging using microresonator soliton frequency combs. Science. 359(6378), 887-891(2018).

【85】Suh Myoung-Gyun and J Vahala Kerry. Soliton microcomb range measurement. Science. 359(6378), 884-887(2018).

引用该论文

Yihan Pi,Chunze Wang,Youjian Song,Minglie Hu. Ultra-low timing jitter femtosecond laser technology (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201058-20201058

皮一涵,王春泽,宋有建,胡明列. 极低时间抖动的飞秒激光技术(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201058-20201058

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF