首页 > 论文 > 光学学报 > 39卷 > 8期(pp:827001--1)

基于腔电光力系统增强罗兰C台间同步精度问题研究

Research on Enhancing Synchronization Precision Between Roland C Stations Based on Cavity Electro-Opto-Mechanical System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

罗兰C系统受到原子钟工艺和无线电信号测量精度限制,难以实现台站间高精度时间同步。基于量子纠缠微波信号和腔电光力系统,通过将微波量子信号转换到光频域进行符合探测,可以得到更精准的罗兰C主副台的同步时差信息。经过理论分析和仿真,得出腔中微波和光转换的条件,以及腔内耗散对保真度的影响。通过控制腔的驱动场参数可实现最优相位灵敏度检测,精度水平能达到皮秒量级。相较于原有同步方式,无需使用昂贵原子时钟,无需测量脉冲到达时间,即能有效提高时间同步精度。

Abstract

Being limited by the accuracy of the atomic clock process and radio signal measurement, it’s difficult to achieve high-precision time synchronization between Roland C stations. Based on the quantum entangled microwave signal and cavity electro-opto-mechanical system, the more accurate synchronized time difference information of Roland C main and auxiliary stations can be obtained by converting the microwave quantum signal into the optical frequency domain for coincidence detection. Through theoretical analysis and simulation, the conditions of microwave and optical conversion in the cavity, as well as the effect of cavity dissipation on the fidelity are obtained. The optimal phase sensitivity detection can be realized by controlling the driving field parameters of the cavity, and the precision level can reach the picosecond level. Compared with the original synchronization method, this scheme can effectively improve the time measurement accuracy, without using expensive atomic clock and measuring the pulse arrival time.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.0827001

所属栏目:量子光学

基金项目:国家自然科学基金(61573372,61603413);

收稿日期:2019-03-02

修改稿日期:2019-05-05

网络出版日期:2019-08-01

作者单位    点击查看

陈超:空军工程大学信息与导航学院, 陕西 西安 710077
吴德伟:空军工程大学信息与导航学院, 陕西 西安 710077
杨春燕:空军工程大学信息与导航学院, 陕西 西安 710077
李响:空军工程大学信息与导航学院, 陕西 西安 710077
罗均文:空军工程大学信息与导航学院, 陕西 西安 710077

联系人作者:陈超(1553660157@qq.com); 吴德伟( wudewei74609@126.com);

备注:国家自然科学基金(61573372,61603413);

【1】Wang J, Yan J H and Li C Z. Foreign situation of enhanced Loran and analyses of the modernization reconstruction of domestic Loran-C system. Hydrographic Surveying and Charting. 29(3), 79-82(2009).
汪捷, 严建华, 李川章. 国际eLoran发展现状与我国罗兰C现代化的技术分析. 海洋测绘. 29(3), 79-82(2009).

【2】Yan J H, Niu H F and Zhao L X. Measurement analysis of factors influencing Loran C positioning and timing accuracy. Hydrographic Surveying and Charting. 34(4), 69-72(2014).
严建华, 牛会丰, 赵立霞. 影响罗兰C系统定位定时精度因素的实测分析. 海洋测绘. 34(4), 69-72(2014).

【3】Liu X T and Hu A P. Research on application extension of long wave navigation system. Modern Navigation. 4(2), 116-119(2013).
刘辛涛, 胡安平. 长波导航系统拓展应用研究. 现代导航. 4(2), 116-119(2013).

【4】Hou F Y, Quan R A, Tai Z Y et al. Review of progress in quantum synchronization protocols research. Journal of Time and Frequency. 37(2), 65-73(2014).
侯飞雁, 权润爱, 邰朝阳 等. 量子时间同步协议研究进展回顾. 时间频率学报. 37(2), 65-73(2014).

【5】Giovannetti V and Lloyd S. MacCone L. Quantum-enhanced positioning and clock synchronization. Nature. 412(6845), 417-419(2001).

【6】Song P S, Ma J, Ma Z et al. Research and development status of quantum navigation technology. Laser & Optoelectronics Progress. 55(9), (2018).
宋培帅, 马静, 马哲 等. 量子定位导航技术研究与发展现状. 激光与光电子学进展. 55(9), (2018).

【7】Giovannetti V and Lloyd S. MacCone L, et al. Clock synchronization with dispersion cancellation. Physical Review Letters. 87(11), (2001).

【8】Giovannetti V and Lloyd S. MacCone L, et al. Conveyor-belt clock synchronization. Physical Review A. 70(4), (2004).

【9】Valencia A, Scarcelli G and Shih Y. Distant clock synchronization using entangled photon pairs. Applied Physics Letters. 85(13), 2655-2657(2004).

【10】Hong C K, Ou Z Y and Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Physical Review Letters. 59(18), 2044-2046(1987).

【11】Bahder T B and Golding W M. Clock synchronization based on second-order coherence of entangled photons. AIP Conference Proceedings. 734, 395-398(2004).

【12】Wu D W, Li X, Yang C Y et al. Progress of dual-path quantum entanglement microwave signals based on superconducting Josephson junction. Chinese Journal of Quantum Electronics. 34(1), 1-8(2017).
吴德伟, 李响, 杨春燕 等. 基于超导约瑟夫森结的双路径量子纠缠微波信号研究进展. 量子电子学报. 34(1), 1-8(2017).

【13】Su X L, Zhao Y P, Hao S H et al. Experimental preparation of eight-partite cluster state for photonic qumodes. Optics Letters. 37(24), 5178-5180(2012).

【14】Chen X, Liu X W, Zhang K Y et al. Quantum measurement with cavity optomechanical systems. Acta Physica Sinica. 64(16), (2015).
陈雪, 刘晓威, 张可烨 等. 腔光力学系统中的量子测量. 物理学报. 64(16), (2015).

【15】Fiore V, Yang Y, Kuzyk M C et al. Storing optical information as a mechanical excitation in a silica optomechanical resonator. Physical Review Letters. 107(13), (2011).

【16】Wang Y D and Clerk A A. Using interference for high fidelity quantum state transfer in optomechanics. Physical Review Letters. 108(15), (2012).

【17】Chen C, Wu D W, Yang C Y et al. Method for improving Roland C inter-station synchronization precision using continuous-variable entanglement signals. Laser & Optoelectronics Progress. 56(4), (2019).
陈超, 吴德伟, 杨春燕 等. 利用连续变量纠缠信号提高罗兰C台间同步精度的方法. 激光与光电子学进展. 56(4), (2019).

【18】Xie H. The quantum coherence control based on cavity optomechanical system. Fuzhou: Fujian Normal University. 47-59(2017).
谢鸿. 基于腔光力系统的量子相干操控. 福州: 福建师范大学. 47-59(2017).

【19】Zhu X L. Theoretical research on some quantum optical phenomena in an optomechanical system assisted by microwave. Taiyuan: Taiyuan University of Technology. 12-25(2018).
朱小霖. 微波腔光力系统中量子光学效应的研究. 太原: 太原理工大学. 12-25(2018).

【20】Liu Y. Research on the generation of non-classical microwave states in cavity optomechanical systems. Wuhan: Central China Normal University. 62-87(2016).
刘艳. 在腔光力系统中实现微波非经典态的研究. 武汉: 华中师范大学. 62-87(2016).

【21】Barzanjeh S, Guha S, Weedbrook C et al. Microwave quantum illumination. Physical Review Letters. 114(8), (2015).

【22】Zhang D, Li C B, Zhang Z Y et al. Enhanced intensity-difference squeezing via energy-level modulations in hot atomic media. Physical Review A. 96(4), (2017).

【23】Li C B, Jiang Z H, Zhang Y Q et al. Controlled correlation and squeezing in Pr 3+∶Y2SiO5 to yield correlated light beams . Physical Review Applied. 7(1), (2017).

【24】Huang S M. Quantum state transfer in cavity electro-optic modulators. Physical Review A. 92(4), (2015).

【25】Zhang P J. Investigation on the theory of quantum illumination with applications in radar target detection. Chendu: University of Electronic Science and Technology of China. 24-64(2017).
张鹏举. 量子照明在雷达目标探测中的应用研究. 成都: 电子科技大学. 24-64(2017).

【26】O''''Connell A D. Hofheinz M, Ansmann M, et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature. 464(7289), 697-703(2010).

【27】Mari A and Eisert J. Gently modulating optomechanical systems. Physical Review Letters. 103(21), (2009).

【28】Zhang K Y, Bariani F, Dong Y et al. Proposal for an optomechanical microwave sensor at the subphoton level. Physical Review Letters. 114(11), (2015).

【29】Gu W J. Ground-state cooling of the mechanical oscillator and preparation of nonclassical states in cavity optomechanical systems. Wuhan: Central China Normal University. 32-42(2014).
谷文举. 腔光力系统中振子的冷却及非经典态的制备. 武汉: 华中师范大学. 32-42(2014).

【30】Wang X C, Li S K, Li G et al. Optical Fabry-Pérot cavity system with high thermal stability and high finesse. Acta Optica Sinica. 37(1), (2017).
王兴昌, 李少康, 李刚 等. 高热稳定性高精细度光学法布里-珀罗腔系统. 光学学报. 37(1), (2017).

【31】Grudinin I S, Ilchenko V S and Maleki L. Ultrahigh optical Q factors of crystalline resonators in the linear regime. Physical Review A. 74(6), (2006).

【32】Yan X B, Cui C L, Gu K H et al. Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system. Optics Express. 22(5), 4886-1895(2014).

【33】Yan X B. Studies on coherent control and potential applications of double-cavity optomechanical systems. Changchun: Jilin University. 84-96(2014).
严晓波. 双腔光力学系统的相干控制与潜在应用研究. 长春: 吉林大学. 84-96(2014).

【34】Feng X M, Jin G R and Yang W. Quantum interferometry with binary-outcome measurements in the presence of phase diffusion. Physical Review A. 90(1), (2014).

【35】Liu P, Feng X M and Jin G R. Quantum entanglement of an entangled coherent state: role of particle losses. Chinese Physics B. 23(3), (2014).

【36】Feng X M. Phase measurements and numerical simulations based on quantum optical interferometry. Beijing: Beijing Jiaotong University. 59-68(2016).
冯晓敏. 基于光量子干涉的相位测量及数值模拟. 北京: 北京交通大学. 59-68(2016).

【37】Shao M M. Dual output quantum phase measurement China Science and Technology Information. 2018(9), 93-96(0).
邵蒙蒙. 双输出量子相位测量 中国科技信息. 2018(9), 93-96(0).

引用该论文

Chao Chen,Dewei Wu,Chunyan Yang,Xiang Li,Junwen Luo. Research on Enhancing Synchronization Precision Between Roland C Stations Based on Cavity Electro-Opto-Mechanical System[J]. Acta Optica Sinica, 2019, 39(8): 0827001

陈超,吴德伟,杨春燕,李响,罗均文. 基于腔电光力系统增强罗兰C台间同步精度问题研究[J]. 光学学报, 2019, 39(8): 0827001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF