首页 > 论文 > 激光与光电子学进展 > 56卷 > 13期(pp:132801--1)

微脉冲激光雷达与小型后向散射探空仪对气溶胶垂直结构联合观测研究

Combined Observation of Aerosol Vertical Structure Using Micro-Pulse Lidar and Compact Optical Backscatter Aerosol Detector

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

2017年7月至8月,使用微脉冲激光雷达与小型气溶胶后向散射探空仪在昆明开展了一个月的气溶胶垂直结构联合观测实验。对比2种仪器同步观测方法与探测后向散射比结果的异同,分析激光雷达和后向散射探空仪测量获得的气溶胶垂直分布特征。探测结果表明,两者具有较好的一致性,在1~4 km高度范围内,排除云层干扰后,2种仪器后向散射比测量结果的相关系数为0.87,方均根误差为0.752;观测实验表明,研制的微脉冲激光雷达为连续探测气溶胶垂直结构演化过程提供了有效手段,融合后向散射仪探空数据,可以减少微脉冲激光雷达数据反演中的假设参数,开展两者联合观测具有一定应用价值。

Abstract

A micro-pulse lidar and a compact optical backscatter aerosol detector (COBALD) are deployed for the combined observation of aerosol vertical structures at Kunming from July to August 2017. The synchronous observation and comparison methods of these two instruments are introduced. The differences in the backscatter ratio profiles and vertical distribution characteristics of the aerosols, which are simultaneously measured by the lidar and COBALD, are analyzed. The observation results of the two instruments show good consistency with each other. The correlation coefficient between the backscatter ratio measured by lidar and that measured by COBALD is 0.87 in the absence of a cloud at a height of 1-4 km, and the corresponding root-mean-square error is 0.752. Atmospheric observation results indicate that the developed micro-pulse lidar is an effective tool for continuous detection of the evolution processes of aerosol vertical structures. Synchronous fusion with sounding data from the COBALD can reduce hypothetical parameters in the retrieve algorithm of lidar signals. In conclusion, the combined observation of these two instruments has certain application.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.132801

所属栏目:遥感与传感器

基金项目:国家重点研发计划、海洋公益性行业科研专项项目、山东省自然科学基金;

收稿日期:2018-12-26

修改稿日期:2019-01-24

网络出版日期:2019-07-01

作者单位    点击查看

李辉:齐鲁工业大学(山东省科学院), 山东省科学院海洋仪器仪表研究所, 山东 青岛 266100
王章军:齐鲁工业大学(山东省科学院), 山东省科学院海洋仪器仪表研究所, 山东 青岛 266100
王颢樾:云南大学大气科学系, 云南 昆明 650091
陈超:齐鲁工业大学(山东省科学院), 山东省科学院海洋仪器仪表研究所, 山东 青岛 266100
孟祥谦:齐鲁工业大学(山东省科学院), 山东省科学院海洋仪器仪表研究所, 山东 青岛 266100
刘兴涛:齐鲁工业大学(山东省科学院), 山东省科学院海洋仪器仪表研究所, 山东 青岛 266100
李先欣:齐鲁工业大学(山东省科学院), 山东省科学院海洋仪器仪表研究所, 山东 青岛 266100
庄全风:齐鲁工业大学(山东省科学院), 山东省科学院海洋仪器仪表研究所, 山东 青岛 266100
王秀芬:齐鲁工业大学(山东省科学院), 山东省科学院海洋仪器仪表研究所, 山东 青岛 266100

联系人作者:王章军(zhangjun.wang@hotmail.com)

备注:国家重点研发计划、海洋公益性行业科研专项项目、山东省自然科学基金;

【1】Stocker T F, Qin D H, Plattner G K et al. (2013).

【2】Song X Q, Liu Z S, He Y et al. Experimental researches of atmosphere lidar system working by day. Journal of Ocean University of Qingdao. 31(4), 593-599(2001).
宋小全, 刘智深, 贺岩 等. 白天工作条件下大气激光雷达探测的实验研究. 青岛海洋大学学报. 31(4), 593-599(2001).

【3】Hua D X and Song X Q. Advances in lidar remote sensing techniques. Infrared and Laser Engineering. 37(S3), 21-27(2008).
华灯鑫, 宋小全. 先进激光雷达探测技术研究进展. 红外与激光工程. 37(S3), 21-27(2008).

【4】Chen S S, Xu Q S, Xu C D et al. Calculation of whole atmospheric aerosol optical depth based on micro-pulse lidar. Acta Optica Sinica. 37(7), (2017).
陈莎莎, 徐青山, 徐赤东 等. 基于微脉冲激光雷达计算整层大气气溶胶光学厚度. 光学学报. 37(7), (2017).

【5】Chen C and Song X Q. LabVIEW software design of data acquisition and visualization for atmospheric lidar. Chinese Journal of Quantum Electronics. 30(1), 116-122(2013).
陈超, 宋小全. 基于LabVIEW大气激光雷达数据采集与视化软件的设计. 量子电子学报. 30(1), 116-122(2013).

【6】Mao J D, Hua D X and He T Y. A compact Mie scattering lidar and its observation. Acta Photonica Sinica. 39(2), 284-288(2010).
毛建东, 华灯鑫, 何廷尧. 小型米散射激光雷达的研制及其探测. 光子学报. 39(2), 284-288(2010).

【7】Zhu C X, Cao N W, Yang F K et al. Micro pulse lidar observations of aerosols in Nanjing. Laser & Optoelectronics Progress. 52(5), (2015).
祝存兄, 曹念文, 杨丰恺 等. 南京地区微脉冲激光雷达气溶胶观测. 激光与光电子学进展. 52(5), (2015).

【8】Wang Z J, Du L B, Li X X et al. Observations of marine aerosol by a shipborne multiwavelength lidar over the Yellow Sea of China. Proceedings of SPIE. 9262, (2014).

【9】Du L B, Wang Z J, Chen C et al. Development and applications of a micropulse lidar. Chinese Journal of Quantum Electronics. 30(1), 84-88(2013).
杜立彬, 王章军, 陈超 等. 微脉冲激光雷达系统实验观测及应用. 量子电子学报. 30(1), 84-88(2013).

【10】Yoon S C, Kim S W, Kim M H et al. Ground-based Mie-scattering lidar measurements of aerosol extinction profiles during ABC-EAREX 2005: comparisons of instruments and inversion algorithms. Journal of the Meteorological Society of Japan. 86(2), 377-396(2008).

【11】Tao Z. McCormick M P, Wu D. A comparison method for spaceborne and ground-based lidar and its application to the CALIPSO lidar. Applied Physics B. 91(3/4), 639-644(2008).

【12】Solanki R and Singh N. LiDAR observations of the vertical distribution of aerosols in free troposphere:comparison with CALIPSO level-2 data over the central Himalayas. Atmospheric Environment. 99, 227-238(2014).

【13】Zhu W Y, Xu C D, Qian X M et al. Statistical analysis of the spatial-temporal distribution of aerosol extinction retrieved by micro-pulse lidar in Kashgar, China. Optics Express. 21(3), 2531-2537(2013).

【14】Zhang Z Y, Su L and Chen L F. The ground-based lidar combined with sun photometer for aerosol vertical profiles and optical properties over Beijing. IOP Conference Series: Earth and Environmental Science. 17, (2014).

【15】He Q S, Li C C, Mao J T et al. A study on the aerosol extinction-to-backscatter ratio with combination of micro-pulse LIDAR and MODIS over Hong Kong. Atmospheric Chemistry and Physics. 6(11), 3243-3256(2006).

【16】Bian J C, Pan L L, Paulik L et al. In situ water vapor and ozone measurements in Lhasa and Kunming during the Asian summer monsoon. Geophysical Research Letters. 39(19), (2012).

【17】Chen C, Wang Z J, Meng X Q et al. Development of a scanning micro-pulse lidar for aerosol and cloud detection. Proceedings of SPIE. 9262, (2014).

【18】Rosen J M and Kjome N T. Backscattersonde: a new instrument for atmospheric aerosol research. Applied Optics. 30(12), 1552-1561(1991).

【19】Brabec M, Wienhold F G, Luo B P et al. Particle backscatter and relative humidity measured across cirrus clouds and comparison with microphysical cirrus modelling. Atmospheric Chemistry and Physics. 12(19), 9135-9148(2012).

【20】Vernier J P, Fairlie T D, Natarajan M et al. Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution. Journal of Geophysical Research: Atmospheres. 120(4), 1608-1619(2015).

【21】Khaykin S M, Engel I, V?mel H et al. Arctic stratospheric dehydration - Part 1: unprecedented observation of vertical redistribution of water. Atmospheric Chemistry and Physics. 13(22), 11503-11517(2013).

【22】Fernald F G. Analysis of atmospheric lidar observations: some comments. Applied Optics. 23(5), 652-653(1984).

【23】Li H, Sun J Y, Chen Z et al. Aerosol optical properties observation in Qingdao offshore area with shipborne lidar. Chinese Journal of Quantum Electronics. 34(4), 486-494(2017).
李辉, 孙加运, 陈震 等. 船载激光雷达观测青岛海域气溶胶光学性质实验研究. 量子电子学报. 34(4), 486-494(2017).

【24】Di H G, Hou X L, Zhao H et al. Detections and analyses of aerosol optical properties under different weather conditions using multi-wavelength Mie lidar. Acta Physica Sinica. 63(24), (2014).
狄慧鸽, 侯晓龙, 赵虎 等. 多波长激光雷达探测多种天气气溶胶光学特性与分析. 物理学报. 63(24), (2014).

【25】Wang X P, Song X Q, Chen Y B et al. Observation and validation of cloud layer structures from the mobile Doppler lidar and radiosonde during spring in Beijing. Acta Optica Sinica. 35(s2), (2015).
王箫鹏, 宋小全, 陈玉宝 等. 激光雷达观测北京春季云垂直结构及探空对比研究. 光学学报. 35(s2), (2015).

引用该论文

Hui Li, Zhangjun Wang, Haoyue Wang, Chao Chen, Xiangqian Meng, Xingtao Liu, Xianxin Li, Quanfeng Zhuang, Xiufen Wang. Combined Observation of Aerosol Vertical Structure Using Micro-Pulse Lidar and Compact Optical Backscatter Aerosol Detector[J]. Laser & Optoelectronics Progress, 2019, 56(13): 132801

李辉, 王章军, 王颢樾, 陈超, 孟祥谦, 刘兴涛, 李先欣, 庄全风, 王秀芬. 微脉冲激光雷达与小型后向散射探空仪对气溶胶垂直结构联合观测研究[J]. 激光与光电子学进展, 2019, 56(13): 132801

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF