Advanced Photonics, 2020, 2 (4): 046002, Published Online: Aug. 6, 2020  

Rabi oscillations of azimuthons in weakly nonlinear waveguides Download: 582次

Author Affiliations
1 Xi’an Jiaotong University, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an, China
2 Guangdong Xi’an Jiaotong University Academy, Foshan, China
3 Texas A&M University at Qatar, Science Program, Doha, Qatar
Abstract
Rabi oscillation, an interband oscillation, describes periodic motion between two states that belong to different energy levels, in the presence of an oscillatory driving field. In photonics, Rabi oscillations can be mimicked by applying a weak longitudinal periodic modulation to the refractive index. However, the Rabi oscillations of nonlinear states have yet to be introduced. We report the Rabi oscillations of azimuthons—spatially modulated vortex solitons—in weakly nonlinear waveguides with different symmetries. The period of the Rabi oscillations can be determined by applying the coupled mode theory, which largely depends on the modulation strength. Whether the Rabi oscillations between two states can be obtained or not is determined by the spatial symmetry of the azimuthons and the modulating potential. Our results not only deepen the understanding of the Rabi oscillation phenomena, but also provide a new avenue in the study of pattern formation and spatial field manipulation in nonlinear optical systems.

Kaichao Jin, Yongdong Li, Feng Li, Milivoj R. Belić, Yanpeng Zhang, Yiqi Zhang. Rabi oscillations of azimuthons in weakly nonlinear waveguides[J]. Advanced Photonics, 2020, 2(4): 046002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!