首页 > 论文 > Photonics Research > 7卷 > 10期(pp:1134-1141)

Strong nonlinear optical effects in micro-confined atmospheric air

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Historically, nonlinear optical phenomena such as spectral broadening by harmonic generation have been associated with crystals owing to their strong nonlinear refractive indices, which are in the range of 10?14 cm2/W. This association was also the result of the limited optical power available from early lasers and the limited interaction length that the laser–crystal interaction architecture could offer. Consequently, these limitations disqualified a large number of materials whose nonlinear coefficient is lower than n210?16 cm2/W as suitable materials for nonlinear optics applications. For example, it is a common practice in most of optical laboratories to consider ambient or atmospheric air as a “nonlinear optically” inert medium due to its very low nonlinear coefficient (10.10?19 cm2/W) and low density. Today, the wide spread of high-power ultra-short pulse lasers on one hand, and low transmission loss and high-power handling of Kagome hollow-core photonic crystal fiber on the other hand, provide the necessary ingredients to excite strong nonlinear optical effects in practically any gas media, regardless of how low its optical nonlinear response is. By using a single table-top 1 mJ ultra-short pulse laser and an air exposed inhibited-coupling guiding hollow-core photonic crystal fiber, we observed generation of supercontinuum and third harmonic generation when the laser pulse duration was set at 600 fs and Raman comb generation when the duration was 300 ps. The supercontinuum spectrum spans over 1000 THz and exhibits a typical spectral-density energy of 150 nJ/nm. The dispersion profile of inhibited-coupling hollow-core fiber imprints a distinctive sequence in the supercontinuum generation, which is triggered by the generation of a cascade of four-wave mixing lines and concluded by solitonic dynamics. The Raman comb spans over 300 THz and exhibits multiple sidebands originating from N2 vibrational and ro-vibrational Raman transitions. With the growing use of hollow-core photonic crystal fiber in different fields, the results can be applied to mitigate air nonlinear response when it is not desired or to use ambient air as a convenient nonlinear medium.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/PRJ.7.001134

所属栏目:Nonlinear Optics

基金项目:BPI via PIA-4F project; Agence Nationale de la Recherche (ANR)10.13039/501100001665; Air Force Office of Scientific Research (AFOSR)10.13039/100000181; National Science Formation (NSF);

收稿日期:2019-04-01

录用日期:2019-08-01

网络出版日期:2019-09-18

作者单位    点击查看

Benoit Debord:GPPMM Group, Xlim Research Institute, CNRS UMR 7252, University of Limoges, FranceGLOphotonics S.A.S, 123 avenue Albert Thomas, 87060 Limoges, France
Martin Maurel:GPPMM Group, Xlim Research Institute, CNRS UMR 7252, University of Limoges, FranceGLOphotonics S.A.S, 123 avenue Albert Thomas, 87060 Limoges, France
Frederic Gerome:GPPMM Group, Xlim Research Institute, CNRS UMR 7252, University of Limoges, FranceGLOphotonics S.A.S, 123 avenue Albert Thomas, 87060 Limoges, France
Luca Vincetti:Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, I-41125 Modena, Italy
Anton Husakou:Max Born Institute, Max-Born-Str. 2a, D-12489 Berlin, Germany
Fetah Benabid:GPPMM Group, Xlim Research Institute, CNRS UMR 7252, University of Limoges, FranceGLOphotonics S.A.S, 123 avenue Albert Thomas, 87060 Limoges, Francee-mail: f.benabid@xlim.fr

联系人作者:Benoit Debord(benoit.debord@xlim.fr)

备注:BPI via PIA-4F project; Agence Nationale de la Recherche (ANR)10.13039/501100001665; Air Force Office of Scientific Research (AFOSR)10.13039/100000181; National Science Formation (NSF);

【1】R. W. BoydR. W. Boyd. Strong nonlinear optical effects in micro-confined atmospheric air. Nonlinear Optics. (2008).

【2】J. K. Ranka, R. S. Windeler and A. J. Stentz. Strong nonlinear optical effects in micro-confined atmospheric air. Opt. Lett. 25, 25-27(2000).

【3】P. A. Franken, A. E. Hill, C. W. Peters and G. Weinreich. Strong nonlinear optical effects in micro-confined atmospheric air. Phys. Rev. Lett. 7, 118-119(1961).

【4】R. R. Alfano and S. L. Shapiro. Strong nonlinear optical effects in micro-confined atmospheric air. Phys. Rev. Lett. 24, 584-587(1970).

【5】W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann and C. D. Thuy. Strong nonlinear optical effects in micro-confined atmospheric air. Opt. Commun. 4, 413-415(1972).

【6】P. B. Corkum, C. Rolland and T. Srinivasan-Rao. Strong nonlinear optical effects in micro-confined atmospheric air. Phys. Rev. Lett. 57, 2268-2271(1986).

【7】J. Dudley, G. Genty and S. Coen. Strong nonlinear optical effects in micro-confined atmospheric air. Rev. Mod. Phys. 78, 1135-1184(2006).

【8】F. Benabid, J. C. Knight, G. Antonopoulos and P. St.J. Russell. Strong nonlinear optical effects in micro-confined atmospheric air. Science. 298, 399-402(2002).

【9】F. Benabid and P. J. Roberts. Strong nonlinear optical effects in micro-confined atmospheric air. J. Mod. Opt. 58, 87-124(2011).

【10】F. Belli, A. Abdolvand, W. Chang, J. C. Travers and P. St.J. Russell. Strong nonlinear optical effects in micro-confined atmospheric air. Optica. 2, 292-300(2015).

【11】A. Beno t, B. Beaudou, M. Alharbi, B. Debord, F. Gér me, F. Salin and F. Benabid. Strong nonlinear optical effects in micro-confined atmospheric air. Opt. Express. 23, 14002-14009(2015).

【12】B. Debord, F. Gér me, C. Honninger, E. Mottay, A. Husakou, F. Benabid, F. Benabid and F. Benabid. Strong nonlinear optical effects in micro-confined atmospheric air. CLEO: 2015 Postdeadline Paper Digest. (2015).

【13】D. Strickland and G. Mourou. Strong nonlinear optical effects in micro-confined atmospheric air. Opt. Commun. 55, 447-449(1985).

【14】M. D. Perry and G. Mourou. Strong nonlinear optical effects in micro-confined atmospheric air. Science. 264, 917-924(1994).

【15】Y. Wang, F. Couny, P. J. Roberts and F. Benabid. Strong nonlinear optical effects in micro-confined atmospheric air. Conference on Lasers and Electro-Optics. (2010).

【16】B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gér me and F. Benabid. Strong nonlinear optical effects in micro-confined atmospheric air. Opt. Express. 21, 28597-28608(2013).

【17】T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome and F. Benabid. Strong nonlinear optical effects in micro-confined atmospheric air. J. Lightwave Technol. 31, 2752-2755(2013).

【18】B. Debord, M. Alharbi, A. Beno t, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gér me and F. Benabid. Strong nonlinear optical effects in micro-confined atmospheric air. Opt. Lett. 39, 6245-6248(2014).

【19】B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gér me and F. Benabid. Strong nonlinear optical effects in micro-confined atmospheric air. Optica. 4, 209-217(2017).

【20】B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gér me and F. Benabid. Strong nonlinear optical effects in micro-confined atmospheric air. Opt. Express. 22, 10735-10746(2014).

【21】E. T. J. Nibbering, G. Grillon, M. A. Franco, B. Prade and A. Mysyrowicz. Strong nonlinear optical effects in micro-confined atmospheric air. J. Opt. Soc. Am. B. 14, 650-660(1997).

【22】V. Loriot, E. Hertz, O. Faucher and B. Lavorel. Strong nonlinear optical effects in micro-confined atmospheric air. Opt. Express. 17, 13429-13434(2009).

【23】A. Laubereau and W. Kaiser. Strong nonlinear optical effects in micro-confined atmospheric air. Rev. Mod. Phys. 50, 607-665(1978).

【24】M. Rokni and A. Flusberg. Strong nonlinear optical effects in micro-confined atmospheric air. IEEE J. Quantum Electron. 22, 1102-1108(1986).

【25】D. R. Miller and R. P. Andres. Strong nonlinear optical effects in micro-confined atmospheric air. J. Chem. Phys. 46, 3418-3423(1967).

【26】F. Benabid, G. Antonopoulos, J. C. Knight and P. St.J. Russell. Strong nonlinear optical effects in micro-confined atmospheric air. Phys. Rev. Lett. 95, (2005).

【27】R. J. Heeman and H. P. Godfried. Strong nonlinear optical effects in micro-confined atmospheric air. IEEE J. Quantum Electron. 31, 358-364(1995).

【28】G. P. AgrawalG. P. Agrawal. Strong nonlinear optical effects in micro-confined atmospheric air. Nonlinear Fiber Optics. 295-352(2013).

【29】G. P. AgrawalG. P. Agrawal. Strong nonlinear optical effects in micro-confined atmospheric air. Nonlinear Fiber Optics. 397-456(2013).

【30】F. Couny, F. Benabid, P. J. Roberts, P. S. Light and M. G. Raymer. Strong nonlinear optical effects in micro-confined atmospheric air. Science. 318, 1118-1121(2007).

【31】S. A. Mousavi, H. C. H. Mulvad, N. Wheeler, P. Horak, T. D. Bradley, S. Alam, J. Hayes, S. R. Sandoghchi, D. Richardson and F. Poletti. Strong nonlinear optical effects in micro-confined atmospheric air. Proc. SPIE. 10088, (2017).

【32】. Strong nonlinear optical effects in micro-confined atmospheric air. (0).

【33】M. Zeisberger and M. A. Schmidt. Strong nonlinear optical effects in micro-confined atmospheric air. Sci. Rep. 7, (2017).

引用该论文

Benoit Debord, Martin Maurel, Frederic Gerome, Luca Vincetti, Anton Husakou, and Fetah Benabid, "Strong nonlinear optical effects in micro-confined atmospheric air," Photonics Research 7(10), 1134-1141 (2019)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF