首页 > 论文 > 光学学报 > 40卷 > 9期(pp:0910001--1)

基于局部线结构约束的FCM聚类视网膜血管分割

Retinal Blood Vessel Segmentation Based on Fuzzy C-Means Clustering According to the Local Line Structural Constraints

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于局部线结构约束的模糊C均值(FCM)聚类眼底视网膜血管分割方法。通过预处理增强血管和背景的对比度信息,采用多尺度匹配滤波器和B-COSFIRE滤波器提取像素特征,然后采用局部线结构约束的FCM聚类算法实现视网膜血管分割,最后通过后处理操作去除孤立的噪声点。在DRIVE数据库的实验结果表明,本文方法的平均准确率为94.21%,平均灵敏度为67.21%,平均特异性为98.2%。与特征空间FCM方法相比,本文方法分割的血管结构的连续性较好,提升了对细小血管检测的灵敏度。

Abstract

In this study, we propose retinal vessel segmentation based on fuzzy C-means (FCM) clustering in accordance with the local line structural constraints. The pixel features are extracted via multi-scale match filter and B-COSFIRE filter of the pre-processed image, where the contrast between the vessel and the background is enhanced. Thus, retinal vessel segmentation can be realized using the FCM clustering algorithm according to the local line structural constraints. Finally, the isolated noise points are eliminated via the post-processing operation. The experiment is performed using the DRIVE database. The average accuracy, sensitivity, and specificity are 94.21%, 67.21%, and 98.2%, respectively. When compared with the traditional feature-space-based FCM algorithm, the proposed method exhibits better continuity with respect to the segmented retinal vessels and is more sensitive to the small blood vessels.

中国激光微信矩阵
补充资料

中图分类号:TN911.73

DOI:10.3788/AOS202040.0910001

所属栏目:图像处理

基金项目:国家自然科学基金;

收稿日期:2019-11-29

修改稿日期:2020-01-19

网络出版日期:2020-05-01

作者单位    点击查看

贾洪:华南师范大学物理与电信工程学院, 广东 广州 510006
郑楚君:华南师范大学物理与电信工程学院, 广东 广州 510006
李灿标:华南师范大学物理与电信工程学院, 广东 广州 510006
王文斌:华南师范大学物理与电信工程学院, 广东 广州 510006
许言兵:华南师范大学物理与电信工程学院, 广东 广州 510006

联系人作者:郑楚君(cjzheng@scnu.edu.cn)

备注:国家自然科学基金;

【1】Srinidhi C L, Aparna P, Rajan J. Recent advancements in retinal vessel segmentation [J]. Journal of Medical Systems. 2017, 41: 70.

【2】Soares J V B, Leandro J J G, Cesar R M, et al. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification [J]. IEEE Transactions on Medical Imaging. 2006, 25(9): 1214-1222.

【3】Ricci E, Perfetti R. Retinal blood vessel segmentation using line operators and support vector classification [J]. IEEE Transactions on Medical Imaging. 2007, 26(10): 1357-1365.

【4】Lupascu C A, Tegolo D, Trucco E. FABC: retinal vessel segmentation using AdaBoost [J]. IEEE Transactions on Information Technology in Biomedicine. 2010, 14(5): 1267-1274.

【5】Zheng T Y, Tang C, Lei Z K. Multi-scale retinal vessel segmentation based on fully convolutional neural network [J]. Acta Optica Sinica. 2019, 39(2): 0211002.
郑婷月, 唐晨, 雷振坤. 基于全卷积神经网络的多尺度视网膜血管分割 [J]. 光学学报. 2019, 39(2): 0211002.

【6】Liang L M, Sheng X Q, Lan Z M, et al. U-shaped retinal vessel segmentation algorithm based on adaptive scale information [J]. Acta Optica Sinica. 2019, 39(8): 0810004.
梁礼明, 盛校棋, 蓝智敏, 等. 自适应尺度信息的U型视网膜血管分割算法 [J]. 光学学报. 2019, 39(8): 0810004.

【7】Chaudhuri S, Chatterjee S, Katz N, et al. Detection of blood vessels in retinal images using two-dimensional matched filters [J]. IEEE Transactions on Medical Imaging. 1989, 8(3): 263-269.

【8】Sofka M, Stewart C V. Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures [J]. IEEE Transactions on Medical Imaging. 2006, 25(12): 1531-1546.

【9】Zana F, Klein J C. Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation [J]. IEEE Transactions on Image Processing. 2001, 10(7): 1010-1019.

【10】Vlachos M, Dermatas E. Multi-scale retinal vessel segmentation using line tracking [J]. Computerized Medical Imaging and Graphics. 2010, 34(3): 213-227.

【11】Saffarzadeh V, Osareh A, Shadgar B. Vessel segmentation in retinal images using multi-scale line operator and K-means clustering [J]. Journal of Medical Signals & Sensors. 2014, 4(2): 122-129.

【12】Ali A. Wan Zaki W M D, Hussain A. Blood vessel segmentation from color retinal images using K-means clustering and 2D Gabor wavelet[M]. ∥Ntalianis K: , 2017, 428: 221-227.

【13】Dey N, Roy A B, Pal M, et al. -09-06)[2019-11-08] . 2012, top/abs/1209: 1181.Dey N, Roy A B, Pal M, et al. -09-06)[2019-11-08] . 2012, top/abs/1209: 1181.

【14】Khan Z F. NaliniPriya G. Automatic segmentation of retinal blood vessels employing textural fuzzy C-means clustering . [C]∥2016 International Conference on Emerging Technological Trends (ICETT), October 21-22, 2016. Kollam, India. IEEE. 2016, 787367.

【15】Kande G B, Subbaiah P V, Savithri T S. Unsupervised fuzzy based vessel segmentation in pathological digital fundus images [J]. Journal of Medical Systems. 2010, 34(5): 849-858.

【16】Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data [J]. IEEE Transactions on Medical Imaging. 2002, 21(3): 193-199.

【17】Azzopardi G, Strisciuglio N, Vento M, et al. Trainable COSFIRE filters for vessel delineation with application to retinal images [J]. Medical Image Analysis. 2015, 19(1): 46-57.

【18】Nguyen U T V, Bhuiyan A, Park L A F, et al. An effective retinal blood vessel segmentation method using multi-scale line detection [J]. Pattern Recognition. 2013, 46(3): 703-715.

【19】Bezdek J C. Pattern recognition with fuzzy objective function algorithms [M]. Boston, MA: Springer US. 1981.

【20】Staal J, Abramoff M D, Niemeijer M, et al. Ridge-based vessel segmentation in color images of the retina [J]. IEEE Transactions on Medical Imaging. 2004, 23(4): 501-509.

【21】Meng L, Liu J, Cao H, et al. Retinal vessel segmentation based on Frangi filter and Otsu algorithm [J]. Laser & Optoelectronics Progress. 2019, 56(18): 181004.
孟琳, 刘静, 曹慧, 等. 基于Frangi滤波器和Otsu视网膜血管分割 [J]. 激光与光电子学进展. 2019, 56(18): 181004.

【22】Cai Z Z, Tang P, Hu J B, et al. Retinal vessel segmentation based on PST and multi-scale Gaussian filter [J]. Application Research of Computers. 2019, 36(6): 1893-1896.
蔡震震, 唐鹏, 胡建斌, 等. 基于PST和多尺度高斯滤波的视网膜血管的分割 [J]. 计算机应用研究. 2019, 36(6): 1893-1896.

【23】Wang W H, Zhang J Z, Wu W Y. New approach to segment retinal vessel using morphology and Otsu [J]. Application Research of Computers. 2019, 36(7): 2228-2231.
汪维华, 张景中, 吴文渊. 改进的形态学与Otsu相结合的视网膜血管分割 [J]. 计算机应用研究. 2019, 36(7): 2228-2231.

引用该论文

Jia Hong,Zheng Chujun,Li Canbiao,Wang Wenbin,Xu Yanbing. Retinal Blood Vessel Segmentation Based on Fuzzy C-Means Clustering According to the Local Line Structural Constraints[J]. Acta Optica Sinica, 2020, 40(9): 0910001

贾洪,郑楚君,李灿标,王文斌,许言兵. 基于局部线结构约束的FCM聚类视网膜血管分割[J]. 光学学报, 2020, 40(9): 0910001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF