首页 > 论文 > 激光与光电子学进展 > 57卷 > 17期(pp:170004--1)

自由空间激光时频传输研究进展

Research Progress on Free-Space Laser Time-Frequency Transfer

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

随着高精度光钟及其各种应用的发展,人们对时频传输技术的精度要求越来越高。基于光纤的时频传输技术已经较为成熟,而自由空间激光时频传输技术可以应用在不方便铺设光纤、快速机动场合以及星地、星间时频传输领域。介绍了国内外在近地空间以及星地间进行时频传输的研究现状,并对其未来的发展趋势进行了展望。未来自由空间激光时频传输将会朝更高的传输精度、时频传输、测距、通信一体化以及时频空间组网的方向发展。

Abstract

With the development of high precision optical clock and its various applications, higher and higher precision is needed for time-frequency transmission technology. Time-frequency transmission technology based on optical fiber has been relatively mature, while the time-frequency transmission technology based on free-space laser can be applied to the fields of inconvenient laying of optical fiber, fast maneuvering, and time-frequency transmission between the satellite and the Earth and between satellites. This paper introduces the research status of near-earth space and time-frequency transmission between the satellite and the Earth, and the development trend is also prospected. In the future, free-space laser time-frequency transmission will develop towards higher transmission accuracy, time-frequency transmission, ranging, communication integration, and time-frequency space networking.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN929.12

DOI:10.3788/LOP57.170004

所属栏目:综述

基金项目:国家自然科学基金;

收稿日期:2019-11-18

修改稿日期:2019-12-13

网络出版日期:2020-09-01

作者单位    点击查看

孙延光:电子信息控制重点实验室, 四川 成都 610036中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
徐敏:电子信息控制重点实验室, 四川 成都 610036
陈亚晴:中国科学院上海光学精密机械研究所中科院量子光学重点实验室, 上海 201800
吴瑞:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
桂有珍:中国科学院上海光学精密机械研究所中科院量子光学重点实验室, 上海 201800
程楠:中国科学院上海光学精密机械研究所中科院量子光学重点实验室, 上海 201800
应康:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
杨飞:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
蔡海文:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800

联系人作者:孙延光(ygsun@siom.ac.cn); 桂有珍(yzgui@siom.ac.cn); 蔡海文(hwcai@siom.ac.cn);

备注:国家自然科学基金;

【1】Predehl K, Grosche G. Raupach S M F, et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place [J]. Science. 2012, 336(6080): 441-444.

【2】Riehle F. Optical clock networks [J]. Nature Photonics. 2017, 11(1): 25-31.

【3】Foreman S M, Holman K W, Hudson D D, et al. Remote transfer of ultrastable frequency references via fiber networks [J]. Review of Scientific Instruments. 2007, 78(2): 021101.

【4】He Y B. Baldwin K G H, Orr B J, et al. Long-distance telecom-fiber transfer of a radio-frequency reference for radio astronomy [J]. Optica. 2018, 5(2): 138-146.

【5】Zhu X, Wang B, Guo Y C, et al. Robust fiber-based frequency synchronization system immune to strong temperature fluctuation [J]. Chinese Optics Letters. 2018, 16(1): 010605.

【6】Liang Y F, Xu J N, Wu M, et al. Research progress on fiber time-frequency synchronization technology [J]. Laser & Optoelectronics Progress. 2020, 57(5): 050004.
梁益丰, 许江宁, 吴苗, 等. 光纤时频同步技术研究现状及发展趋势 [J]. 激光与光电子学进展. 2020, 57(5): 050004.

【7】Frank F, Stefani F, Tuckey P, et al. A sub-ps stability time transfer method based on optical modems [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2018, 65(6): 1001-1006.

【8】Kim J, Cox J A, Chen J, et al. Drift-free femtosecond timing synchronization of remote optical and microwave sources [J]. Nature Photonics. 2008, 2(12): 733-736.

【9】Deng X, Liu J, Jiao D D, et al. Coherent transfer of optical frequency over 112 km with instability at the 10-20 level [J]. Chinese Physics Letters. 2016, 33(11): 114202.

【10】Guillou-Camargo F, Ménoret V, Cantin E, et al. First industrial-grade coherent fiber link for optical frequency standard dissemination [J]. Applied Optics. 2018, 57(25): 7203-7210.

【11】Giorgetta F R, Swann W C, Sinclair L C, et al. Optical two-way time and frequency transfer over free space [J]. Nature Photonics. 2013, 7(6): 434-438.

【12】Sprenger B, Zhang J, Lu Z, et al. Atmospheric transfer of optical and radio frequency clock signals [J]. Optics Letters. 2009, 34(7): 965-967.

【13】Djerroud K, Samain E, Clairon A, et al. A coherent optical link through the turbulent atmosphere . [C]∥EFTF-2010 24th European Frequency and Time Forum, April 13-16, 2010, Noordwijk, Netherlands. New York: IEEE. 2010, 1-6.

【14】Alatawi A, Gollapalli R P, Duan L Z. Radio-frequency clock delivery via free-space frequency comb transmission [J]. Optics Letters. 2009, 34(21): 3346-3348.

【15】Sinclair L C, Giorgetta F R, Swann W C, et al. Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer [J]. Physical Review A. 2014, 89(2): 023805.

【16】Sinclair L C, Swann W C, Bergeron H, et al. Synchronization of clocks through 12 km of strongly turbulent air over a City [J]. Applied Physics Letters. 2016, 109(15): 151104.

【17】Sinclair L C, Bergeron H, Swann W C, et al. Femtosecond optical two-way time-frequency transfer in the presence of motion [J]. Physical Review A. 2019, 99(2): 023844.

【18】Sinclair L C, Swann W C, Deschênes J D, et al. Optical system design for femtosecond-level synchronization of clocks [J]. Proceedings of SPIE. 2016, 9763: 976308.

【19】Deschênes J D, Sinclair L C, Giorgetta F R, et al. Synchronization of distant optical clocks at the femtosecond level [J]. Physical Review X. 2016, 6(2): 021016.

【20】Miao J. Time and frequency synchronization in free space [D]. Beijing: Tsinghua Univesity. 2015.
苗菁. 自由空间时间频率同步 [D]. 北京: 清华大学. 2015.

【21】Hou D, Zhang D N, Sun F Y, et al. Research on high-precision free-space time and frequency transfer [J]. Journal of Time and Frequency. 2018, 41(3): 219-227.
侯冬, 张大年, 孙富宇, 等. 高精度自由空间时间与频率传递研究 [J]. 时间频率学报. 2018, 41(3): 219-227.

【22】Chen S J, Sun F Y, Bai Q S, et al. Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation [J]. Optics Communications. 2017, 401: 18-22.

【23】Guo G K, Hou D, Sun F Y, et al. Laser-based atmospheric radio-frequency transfer with sub-picosecond timing fluctuation using single phase compensator [J]. Optics Communications. 2018, 426: 526-530.

【24】Sun F Y, Hou D, Zhang D N, et al. Femtosecond-level timing fluctuation suppression in atmospheric frequency transfer with passive phase conjunction correction [J]. Optics Express. 2017, 25(18): 21312-21320.

【25】Hou D, Zhang D N, Sun F Y, et al. Free-space-based multiple-access frequency dissemination with optical frequency comb [J]. Optics Express. 2018, 26(15): 19199-19205.

【26】Yue C L, Li J W, Sun J F, et al. Homodyne coherent optical receiver for intersatellite communication [J]. Applied Optics. 2018, 57(27): 7915-7923.

【27】Lu S W, Gao M, Yang Y, et al. Inter-satellite laser communication system based on double Risley prisms beam steering [J]. Applied Optics. 2019, 58(27): 7517-7522.

【28】Feng Z T, Zhang X, Wu R, et al. High-stability and multithreading phase-coherent receiver for simultaneous transfer of stabilized optical and radio frequencies [J]. Optics Letters. 2019, 44(10): 2418-2421.

【29】Feng Z T, Yang F, Zhang X, et al. Ultra-low noise optical injection locking amplifier with AOM-based coherent detection scheme [J]. Scientific Reports. 2018, 8(1): 13135.

【30】Jiang M Y, Chen Y Q, Cheng N, et al. Multi-access RF frequency dissemination based on round-trip three-wavelength optical compensation technique over fiber-optic link [J]. IEEE Photonics Journal. 2019, 11(3): 1-8.

【31】Chen Y Q, Cai H W, Jiang M Y, et al. Stable radio frequency transfer over free space by passive phase correction [J]. IEEE Photonics Journal. 2019, 11(6): 1-8.

【32】Kang J, Shin J, Kim C, et al. Few-femtosecond-resolution characterization and suppression of excess timing jitter and drift in indoor atmospheric frequency comb transfer [J]. Optics Express. 2014, 22(21): 26023-26031.

【33】Meng W D, Zhang H F, Huang P C, et al. Design and experiment of onboard laser time transfer in Chinese Beidou navigation satellites [J]. Advances in Space Research. 2013, 51(6): 951-958.

【34】Prochazka I, Yang F M. Photon counting module for laser time transfer via Earth orbiting satellite [J]. Journal of Modern Optics. 2009, 56: 253-260.

【35】Fridelance P, Samain E, Veillet C. T2L2 - Time transfer by Laser link: a new optical time transfer generation [J]. Experimental Astronomy. 1997, 7(3): 191-207.

【36】Samain E, Fridelance P. Time transfer by laser link (T2L2) experiment on mir [J]. Metrologia. 1998, 35(3): 151-159.

【37】Exertier P, Samain E, Bonnefond P, et al. Status of the T2L2/Jason2 experiment [J]. Advances in Space Research. 2010, 46(12): 1559-1565.

【38】Exertier P, Samain E, Courde C, et al. Sub-ns time transfer consistency: a direct comparison between GPS CV and T2L2 [J]. Metrologia. 2016, 53(6): 1395-1401.

【39】Samain E, Rovera G D, Torre J M, et al. Time transfer by laser link (T2L2) in noncommon view between Europe and China [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2018, 65(6): 927-933.

【40】Schreiber U, Prochazka I, Lauber P, et al. The European laser timing (ELT) experiment on-board ACES . [C]∥2009 IEEE International Frequency Control Symposium Joint With the 22nd European Frequency and Time Forum, April 20-24, 2009, Besancon, France. New York: IEEE. 2009, 594-599.

【41】Schreiber K U, Prochazka I, Lauber P, et al. Ground-based demonstration of the European Laser Timing (ELT) experiment [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 2010, 57(3): 728-737.

【42】Prochazka I, Kodet J, Blazej J, et al. Calibration of system delays in the European Laser Timing to 10 ps accuracy . [C]∥2014 European Frequency and Time Forum (EFTF), June 23-26, 2014, Neuchatel, Switzerland. New York: IEEE. 2014, 223-226.

引用该论文

Sun Yanguang,Xu Min,Chen Yaqing,Wu Rui,Gui Youzhen,Chen Nan,Ying Kang,Yang Fei,Cai Haiwen. Research Progress on Free-Space Laser Time-Frequency Transfer[J]. Laser & Optoelectronics Progress, 2020, 57(17): 170004

孙延光,徐敏,陈亚晴,吴瑞,桂有珍,程楠,应康,杨飞,蔡海文. 自由空间激光时频传输研究进展[J]. 激光与光电子学进展, 2020, 57(17): 170004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF