首页 > 论文 > 光学学报 > 40卷 > 10期(pp:1006001--1)

无滤波24倍频光载毫米波发生器

Filterless 24-Tupling Frequency Millimeter-Wave Generator

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种基于偏振复用的无滤波24倍频毫米波发生器,该发生器采用三平行马赫-曾德尔调制器结构和单个马赫-曾德尔调制器级联的方式,结合偏振复用的结构滤除了所有的冗余光边带,只剩下12阶光边带信号,没有采用任何光/电滤波器就能生成24倍频的高质量毫米波信号。结合系统理论研究,通过仿真验证了该发生器的可行性,对系统进行了性能分析,讨论了非理想情况下调制深度、消光比、相位差、偏置电压以及激光器线宽对系统性能的影响。研究结果表明,光边带抑制比可达到40 dB,射频杂散抑制比可达到近30 dB,系统的传输距离为150 km时仍然有着较好的传输性能。该系统方案没有使用任何辅助滤波器,具有倍频因子高、频谱质量好等优点,对无滤波高倍频毫米波发生器的研究有一定参考价值。

Abstract

Herein, a filterless 24-tupling frequency millimeter-wave generator based on polarization multiplexing was proposed. The generator cascaded a three-parallel Mach-Zehnder modulator structure and a single Mach-Zehnder modulator. Further, the generator used the polarization multiplexing structure to filter out all redundant optical sidebands, leaving only 12th order optical sideband signals. The scheme can produce a 24-tupling frequency millimeter-wave signal without any optical or electrical filter. Moreover, combined with the theoretical study of the system, the feasibility of the generator was verified via simulation. The system performance was analyzed and the effects of modulation depth, extinction ratio, phase difference, bias voltage, and line width of the laser on system performance under non-ideal conditions were discussed. The research results show that the value of the optical sideband suppression ratio and radio frequency stray suppression ratio can reach 40 dB and nearly 30 dB, respectively. The system maintains good transmission performance for 150-km transmission distance. The system does not require any auxiliary filter. This system demonstrates the advantages of a high-frequency multiplier and good spectrum quality, thus providing important reference values for research of filterless millimeter-wave generator.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN929.1

DOI:10.3788/AOS202040.1006001

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金;

收稿日期:2019-12-12

修改稿日期:2020-02-18

网络出版日期:2020-05-01

作者单位    点击查看

薛壮壮:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044北京交通大学光波技术研究所, 北京 100044
裴丽:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044北京交通大学光波技术研究所, 北京 100044
解宇恒:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044北京交通大学光波技术研究所, 北京 100044
郝丹:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044北京交通大学光波技术研究所, 北京 100044
朱可:北京交通大学全光网络与现代通信网教育部重点实验室, 北京 100044北京交通大学光波技术研究所, 北京 100044

联系人作者:裴丽(lipei@bjtu.edu.cn)

备注:国家自然科学基金;

【1】Xu L L, Ning T G, Li J, et al. Improved 60 GHz millimeter-wave generator based on feed-forward modulation [J]. Acta Optica Sinica. 2013, 33(2): 0206002.
许丽丽, 宁提纲, 李晶, 等. 一种改进的基于前向调制技术生成60 GHz毫米波方案 [J]. 光学学报. 2013, 33(2): 0206002.

【2】Wei Z H, Wang R, Pu T, et al. A wideband tunable phase shifter based on orthogonal optical single-sideband [J]. Chinese Optics Letters. 2013, 11(s2): s20601.

【3】Tan Z Y. Research on adaptive bias voltage control technique for Mach-Zehnder modulator [D]. Wuhan: Huazhong University of Science and Technology. 2016, 13-26.
谭芷莹. 马赫-曾德尔调制器偏置电压自适应控制技术研究 [D]. 武汉: 华中科技大学. 2016, 13-26.

【4】Fang Z J, Ye Q, Liu F, et al. Progress of millimeter wave subcarrier optical fiber communication technologies [J]. Chinese Journal of Lasers. 2006, 33(4): 481-488.
方祖捷, 叶青, 刘峰, 等. 毫米波副载波光纤通信技术的研究进展 [J]. 中国激光. 2006, 33(4): 481-488.

【5】Chen J, Lin C T, Shih P T, et al. Generation of optical millimeter-wave signals and vector formats using an integrated optical I/Q modulator [Invited] [J]. Journal of Optical Networking. 2009, 8(2): 188-200.

【6】Ogawa H, Polifko D, Banba S. Millimeter-wave fiber optics systems for personal radio communication [J]. IEEE Transactions on Microwave Theory and Techniques. 1992, 40(12): 2285-2293.

【7】Li J, Ning T G, Pei L, et al. Millimeter-wave radio-over-fiber system based on two-step heterodyne technique [J]. Optics Letters. 2009, 34(20): 3136-3138.

【8】Shang J M, Wang D B, Liu Y J, et al. Research on the controllable frequency octupling technology for generating optical millimeter-wave by external modulator [J]. Acta Optica Sinica. 2014, 34(5): 0506003.
商建明, 王道斌, 刘延君, 等. 基于外调制器的可控八倍频光载毫米波生成技术研究 [J]. 光学学报. 2014, 34(5): 0506003.

【9】Wang Y Q, Pei L, Li Y Q, et al. Analysis on the performance of RoF downlink with tunable optical millimeter-wave generation by employing triangular wave sweep [J]. Infrared and Laser Engineering. 2016, 45(5): 0522001.
王一群, 裴丽, 李月琴, 等. 三角波扫频的可调谐毫米波RoF下行链路性能分析 [J]. 红外与激光工程. 2016, 45(5): 0522001.

【10】Liu T T, Pei L, Wang Y Q, et al. Tunable high-frequency millimeter-wave signal generator based on optical carrier-suppressed modulation [J]. Acta Photonica Sinica. 2018, 47(12): 1206003.
刘婷婷, 裴丽, 王一群, 等. 基于光载波抑制调制的可调谐高倍频毫米波信号发生器 [J]. 光子学报. 2018, 47(12): 1206003.

【11】Hao C Z, Li H Z, Sun Q, et al. Stable bias control technique for any-point locking in Mach-Zehnder modulator [J]. Acta Photonica Sinica. 2017, 46(10): 1023002.
郝崇正, 李洪祚, 孙权, 等. 马赫-曾德尔调制器任意偏置点稳定控制技术 [J]. 光子学报. 2017, 46(10): 1023002.

【12】Zhang J, Wang M G, Shao C G, et al. Photonic frequency-multiplying millimeter-wave generation based on dual-parallel Mach-Zehnder modulator [J]. Acta Optica Sinica. 2014, 34(3): 0306004.
张敬, 王目光, 邵晨光, 等. 基于双平行马赫-曾德尔调制器的光子倍频毫米波生成的研究 [J]. 光学学报. 2014, 34(3): 0306004.

【13】Kawanishi T, Kiuchi H, Yamada M, et al. Quadruple frequency double sideband carrier suppressed modulation using high extinction ratio optical modulators for photonic local oscillators . [C]∥2005 International Topical Meeting on Microwave Photonics, October 14, 2005, Seoul, Korea. New York: IEEE. 2005, 1-4.

【14】Kathpal N, Garg A K. Performance analysis of radio over fiber system using direct and external modulation schemes [J]. International Journal of Scientific & Engineering Research. 2017, 8(4): 172-175.

【15】Ma J X, Yu J, Yu C X, et al. Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation [J]. Journal of Lightwave Technology. 2007, 25(11): 3244-3256.

【16】Ying X Y, Xu T F, Li J, et al. Photonic generation of millimeter-wave signal via frequency 16-tupling based on cascaded dual-parallel MZM [J]. Journal of Optoelectronics·Laser. 2017, 28(11): 1212-1217.
应祥岳, 徐铁峰, 李军, 等. 基于级联双平行MZM的16倍频光生毫米波技术 [J]. 光电子·激光. 2017, 28(11): 1212-1217.

【17】Peng J S, Wen L C. 24 frequency multiplication millimeter-wave signal generation based on cascade modulators [J]. Semiconductor Optoelectronics. 2016, 37(5): 758-762.
彭继慎, 温禄淳. 基于级联调制器的24倍频毫米波信号产生 [J]. 半导体光电. 2016, 37(5): 758-762.

【18】Hong Z Y, Wang T L, Wang J H. Generation of high frequency millimeter wave signal based on parallel modulators [J]. Laser Technology. 2019, 43(2): 275-279.
洪赞扬, 王天亮, 王金华. 基于并联调制器的高倍频毫米波信号生成 [J]. 激光技术. 2019, 43(2): 275-279.

【19】Zhang Z, Wang T L, Zhu W. Generation of 24 multiplied millimeter wave signal based on microwave photonics [J]. Semiconductor Optoelectronics. 2019, 40(6): 852-856.
张舟, 王天亮, 朱维. 基于微波光子的24倍频毫米波信号生成 [J]. 半导体光电. 2019, 40(6): 852-856.

【20】Baskaran M, Prabakaran R. Optical millimeter wave signal generation with frequency 16-tupling using cascaded MZMs and no optical filtering for radio over fiber system [J]. Journal of the European Optical Society-Rapid Publications. 2018, 14: 13.

引用该论文

Xue Zhuangzhuang,Pei Li,Xie Yuheng,Hao Dan,Zhu Ke. Filterless 24-Tupling Frequency Millimeter-Wave Generator[J]. Acta Optica Sinica, 2020, 40(10): 1006001

薛壮壮,裴丽,解宇恒,郝丹,朱可. 无滤波24倍频光载毫米波发生器[J]. 光学学报, 2020, 40(10): 1006001

被引情况

【1】李韦萍,孔淼,石俊婷,余建军. 基于单个光调制器产生多路无线和有线信号. 光学学报, 2020, 40(19): 1906001--1

【2】李韦萍,孔淼,石俊婷,余建军. ROF系统中基于单个调制器的多射频操作. 中国激光, 2020, 47(11): 1106002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF