首页 > 论文 > 光学学报 > 40卷 > 2期(pp:0219001--1)

超材料中高阶效应影响下飞秒准亮孤子解及其特性

Femtosecond Quasi-Bright Soliton Solution and Its Properties Under Influence of Higher-Order Effects in Metamaterials

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于描述超材料中超短脉冲传输的高阶非线性薛定谔方程,采用行波法得到一种精确的飞秒准亮孤子解及其存在条件。研究发现,在群速度色散、三阶色散、三次-五次非线性、自陡峭和二阶非线性色散效应的精确平衡下,超材料中可存在该飞秒准孤子;当三阶色散和二阶非线性色散不存在时,该准孤子无法存在。基于Drude模型,详细讨论了不同非线性超材料中该飞秒准亮孤子存在的不同折射区域。结果表明,该飞秒准孤子可存在于自散焦非线性超材料的负折射区和自聚焦非线性超材料的正折射区,而且在不同区域具有不同的脉冲强度和宽度。这意味着,通过选择不同非线性超材料和输入电磁波的频率,使其位于相应的存在区域,可以实现对孤子特性的调控。

Abstract

Based on the higher-order nonlinear Schr?dinger equation describing ultrashort pulse transmission in metamaterials, this study presents an exact femtosecond quasi-bright soliton solution and determines its existence conditions by using the traveling wave method. When the group speed dispersion, third-order dispersion, cubic-quintic nonlinearities, self-steepening, and second-order nonlinear dispersion effects are properly balanced, the femtosecond quasi-soliton can exist in nonlinear metamaterials. Without the third-order dispersion and second-order nonlinear dispersion, the soliton in metamaterials can not occur. Based on the Drude model, the existence index regions of the femtosecond quasi-bright soliton are discussed in different nonlinear metamaterials. The results show that femtosecond quasi-soliton can exist in the negative index region of self-defocusing nonlinear metamaterials, and in the positive index region of self-focusing nonlinear metamaterials. Moreover, the intensities and widths of the solitons differ in different regions of the metamaterials, implying that the properties of the formed solitons can be adjusted by choosing different nonlinear metamaterials and different frequencies of the incident wave,making them in the corresponding existence areas.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O437

DOI:10.3788/AOS202040.0219001

所属栏目:非线性光学

基金项目:国家自然科学基金、山西省自然科学基金;

收稿日期:2019-08-05

修改稿日期:2019-09-19

网络出版日期:2020-02-01

作者单位    点击查看

白娟:山西大学物理电子工程学院, 山西 太原 030006
杨荣草:山西大学物理电子工程学院, 山西 太原 030006
田晋平:山西大学物理电子工程学院, 山西 太原 030006

联系人作者:杨荣草(sxdxyrc@sxu.edu.cn)

备注:国家自然科学基金、山西省自然科学基金;

【1】Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion [J]. Applied Physics Letters. 1973, 23(3): 142-144.

【2】Nonlinear fiber optics & application of nonlinear fiber optics[M]. Jia D F: Yu Z H, Tan B, et al., Transl. Beijing: Electronic Industry Press, 2002, 94-104.
Agrawal G P, Agrawal G P. 非线性光纤光学原理及应用[M]. 贾东方: 余震虹, 谈斌, 等, 译. 北京: 电子工业出版社, 2002, 94-104.

【3】Kruglov V I, Peacock A C, Harvey J D. Exact solutions of the generalized nonlinear Schr?dinger equation with distributed coefficients [J]. Physical Review E. 2005, 71(5): 056619.

【4】Yang J W, Gao Y T, Feng Y J, et al. Solitons and dromion-like structures in an inhomogeneous optical fiber [J]. Nonlinear Dynamics. 2017, 87(2): 851-862.

【5】Kong D F, Jia D F, Feng D J, et al. Soliton self-frequency shift in optical fibers [J]. Laser & Optoelectronics Progress. 2018, 55(10): 101902.
孔德飞, 贾东方, 冯德军, 等. 光纤中的孤子自频移效应 [J]. 激光与光电子学进展. 2018, 55(10): 101902.

【6】Wang L, Yang R C, Jia H P, et al. Periodically lumped amplification and recovery of soliton in dispersion-decreasing optic fiber link [J]. Acta Optica Sinica. 2017, 37(6): 0619001.
王丽, 杨荣草, 贾鹤萍, 等. 色散渐减光纤链中孤子的周期集总放大和恢复 [J]. 光学学报. 2017, 37(6): 0619001.

【7】Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ [J]. Soviet Physics Uspekhi. 1968, 10(4): 509-514.

【8】Lee S H, Park C M, Seo Y M, et al. Reversed Doppler effect in double negative metamaterials [J]. Physical Review B. 2010, 81(24): 241102.

【9】Shalaev V M. Optical negative-index metamaterials [J]. Nature Photonics. 2007, 1(1): 41-48.

【10】Yang R C, Shadrivov I V. Double-nonlinear metamaterials [J]. Applied Physics Letters. 2010, 97(23): 231114.

【11】Fan K B, Hwang H Y, Liu M K, et al. Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs [J]. Physical Review Letters. 2013, 110(21): 217404.

【12】Gao F, Yang R C, Jia H P, et al. Exact solution of spatial chirped dark soliton in metamaterials and its propagation characteristics [J]. Acta Optica Sinica. 2019, 39(2): 0219001.
高斐, 杨荣草, 贾鹤萍, 等. 超材料中精确的空间啁啾暗孤子解及其传输特性 [J]. 光学学报. 2019, 39(2): 0219001.

【13】Kozyrev A B, Shadrivov I V, Kivshar Y S. Soliton generation in active nonlinear metamaterials [J]. Applied Physics Letters. 2014, 104(8): 084105.

【14】English L Q, Wheeler S G, Shen Y, et al. Backward-wave propagation and discrete solitons in a left-handed electrical lattice [J]. Physics Letters A. 2011, 375(9): 1242-1248.

【15】Lazarides N, Tsironis G P. Publisher''''s note: coupled nonlinear Schr?dinger field equations for electromagnetic wave propagation in nonlinear left-handed materials [Phys. Rev. E71, 036614 (2005)] [J]. Physical Review E. 2005, 71(4): 049903.

【16】Scalora M, Syrchin M S, Akozbek N, et al. Generalized nonlinear Schr?dinger equation for dispersive susceptibility and permeability: application to negative index materials [J]. Physical Review Letters. 2005, 95(1): 013902.

【17】Wen S C, Xiang Y J, Dai X Y, et al. Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials [J]. Physical Review A. 2007, 75(3): 033815.

【18】Li P G, Yang R C, Xu Z Y. Gray solitary-wave solutions in nonlinear negative-index materials [J]. Physical Review E. 2010, 82(4): 046603.

【19】Sharma V K, Goyal A, Raju T S, et al. Periodic and solitary wave solutions for ultrashort pulses in negative-index materials [J]. Journal of Modern Optics. 2013, 60(10): 836-840.

【20】Yang R C, Min X M, Tian J P, et al. New types of exact quasi-soliton solutions in metamaterials [J]. Physica Scripta. 2016, 91(2): 025201.

【21】Yang R C, Zhang Y. Exact combined solitary wave solutions in nonlinear metamaterials [J]. Journal of the Optical Society of America B. 2011, 28(1): 123-127.

【22】Triki H, Zhou Q, Moshokoa S P, et al. Novel singular solitons in optical metamaterials for self-steepening effect [J]. Optik. 2018, 154: 545-550.

【23】Biswas A, Ekici M, Sonmezoglu A, et al. Chirped solitons in optical metamaterials with parabolic law nonlinearity by extended trial function method [J]. Optik. 2018, 160: 92-99.

【24】Daoui A K, Triki H, Biswas A, et al. Chirped bright and double-kinked quasi-solitons in optical metamaterials with self-steepening nonlinearity [J]. Journal of Modern Optics. 2019, 66(2): 192-199.

【25】Daoui A K, Azzouzi F, Triki H, et al. Propagation of chirped gray optical dips in nonlinear metamaterials [J]. Optics Communications. 2019, 430: 461-466.

【26】Li X Z, Wang M L. A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms [J]. Physics Letters A. 2007, 361(1/2): 115-118.

【27】Serge D Y, Justin M, Betchewe G, et al. Optical chirped soliton in metamaterials [J]. Nonlinear Dynamics. 2017, 90(1): 13-18.

【28】Dong J, Jin Y J, Chen C, et al. The transmission properties of exact bright-like and dark-like solitons in metamaterials [J]. Acta Sinica Quantum Optica. 2013, 19(2): 162-170.
董佳, 靳羽茜, 陈诚, 等. 超常介质中精确的亮暗类孤子的传输特性 [J]. 量子光学学报. 2013, 19(2): 162-170.

【29】Ferrando A. Nonlinear plasmonic amplification via dissipative soliton-plasmon resonances [J]. Physical Review A. 2017, 95(1): 013816.

【30】Zhang Q, Tan C H, Huang G X. Lossless Airy surface polaritons in a metamaterial via active Raman gain [J]. Scientific Reports. 2016, 6: 21143.

引用该论文

Bai Juan,Yang Rongcao,Tian Jinping. Femtosecond Quasi-Bright Soliton Solution and Its Properties Under Influence of Higher-Order Effects in Metamaterials[J]. Acta Optica Sinica, 2020, 40(2): 0219001

白娟,杨荣草,田晋平. 超材料中高阶效应影响下飞秒准亮孤子解及其特性[J]. 光学学报, 2020, 40(2): 0219001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF